Skip to main content
Log in

The Growth of {1 1 h}〈1 2 1/h〉 (α*-Fiber) Grains and the Evanesce of {001}〈100〉 (Cube) Grains During the Recrystallization of Warm Rolled Fe-6.5 Wt Pct Si Non-oriented Electrical Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

〈001〉//ND (normal direction) texture (including the cube, {001}〈100〉) is a desired final texture in non-oriented electrical steel (NOES) due to the alignment of two magnetically easy 〈100〉 axes in the magnetization directions of the lamination core in rotating machines. However, after conventional rolling and annealing, the final texture of NOES is usually not the desired 〈001〉//ND texture, but the unfavorable 〈111〉//ND (γ-fiber), 〈110〉//RD (rolling direction) (α-fiber), and sometimes {1 1 h}〈1 2 1/h〉 (α*-fiber) textures. How do these textures (especially the α*-fiber texture) form in the recrystallization process is still not completely understood. This paper investigates the recrystallization process of a warm rolled NOES containing 6.5 wt pct Si and tracks the growth of individual grains using a quasi in-situ EBSD (electron backscatter diffraction) technique. It is shown that the {1 1 h}〈1 2 1/h〉 (α*-fiber) grains (including {001}〈120〉, {114}〈481〉, and {112}〈241〉) normally form in the later stage of recrystallization, and mainly nucleate in the mid-thickness region of the deformed steel from grains having the 〈110〉//RD (α-fiber) orientations. Once nucleated, they can rapidly grow into the deformed matrix due to the large energy difference between the recrystallized and deformed grains and to the high-mobility grain boundaries with respect to the deformed matrix. On the other hand, although cube grains nucleate early during recrystallization, they cannot grow significantly into the deformed grains because of the very high misorientation angles with respect to the deformed grains, which may have caused “orientation pinning”. As a result, the cube grains are finally consumed by the large α*-fiber grains due to size disadvantage. The origins of the α*-fiber grains and cube grains are also analyzed using the quasi in-situ EBSD data obtained in the early stages of annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Ouyang, X. Chen, Y. Liang, C. Macziewski, and J. Cui: Review of Fe-65 wt pct Si high silicon steel: a promising soft magnetic material for sub-kHz application. J. Magnet. Magnetic Mater., 2019, vol. 481, pp. 234–50.

    Article  CAS  Google Scholar 

  2. T.N. Lamichhane, L. Sethuraman, A. Dalagan, H. Wang, J. Keller, and M.P. Paranthaman: Additive manufacturing of soft magnets for electrical machines-a review. Mater Today Phys., 2020, vol. 15, 100255.

    Article  Google Scholar 

  3. R. Liang, P. Yang, and W. Mao: Cube texture evolution and magnetic properties of 65 wt pct Si electrical steel fabricated by surface energy and three-stage rolling method. J Mag. Mag. Mater., 2018, vol. 457(2018), pp. 38–45.

    Article  CAS  Google Scholar 

  4. X. Wang, Z. Liu, H. Li, and G. Wang: Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt pct Si steel thin sheets and its influence on magnetic properties. J. Mag. Mag. Mater., 2017, vol. 433, pp. 8–16.

    Article  CAS  Google Scholar 

  5. H.J. Xu, Y.B. Xu, H.T. Jiao, S.F. Cheng, R.D.K. Misra, and J.P. Li: Influence of grain size and texture prior to warm rolling on microstructure, texture and magnetic properties of Fe-6.5 wt pct Si steel. J. Mag. Mag. Mater., 2018, vol. 453, pp. 236–45.

    Article  CAS  Google Scholar 

  6. X. Shen, F. Meng, K.B. Lau, P. Wang, and C.H.T. Lee: Texture and microstructure characterizations of Fe-3.5 wt pct Si soft magnetic alloy fabricated via laser powder bed fusion. Mater Charact, 2022, vol. 189, p. 112012.

    Article  CAS  Google Scholar 

  7. Y. He and E.J. Hilinski: Textures of non-oriented electrical steel sheets produced by skew cold rolling and annealing. Metals, 2022, vol. 12(1), p. 17.

    Article  CAS  Google Scholar 

  8. L. Fan, Y. Zhu, E. Yue, J. He, and L. Sun: Microstructure and texture evolution of ultra-thin high grade non-oriented silicon steel used in new energy vehicle. Mater. Res. Express, 2022, vol. 9(9), 096515.

    Article  CAS  Google Scholar 

  9. H. Xu, Y. Xu, Y. He, H. Jiao, S. Yue, and J. Li: A quasi in-situ EBSD study of the nucleation and growth of Goss grains during primary and secondary recrystallization of a strip-cast Fe-65 wt pct Si alloy. J. Alloys Compd., 2021, vol. 861, p. 158550.

    Article  CAS  Google Scholar 

  10. M. Yasuda, K. Murakami, and K. Ushioda: Recrystallization behavior and formation of {411}〈148〉 grain from α-fiber grains in heavily cold-rolled Fe-3%Si alloy. ISIJ Int., 2020, vol. 60(11), pp. 2558–568.

    Article  CAS  Google Scholar 

  11. J. Qin, J. Yang, Y. Zhang, Q. Zhou, and Y. Cao: Strong {100}〈012〉-{411}〈148〉 recrystallization textures in heavily hot-rolled non-oriented electrical steels. Mater. Lett., 2020, vol. 259, 126844.

    Article  CAS  Google Scholar 

  12. M. Mehdi, Y. He, E.J. Hilinski, L.A.I. Kestens, and A. Edrisy: The evolution of cube ({001}〈100〉) texture in non-oriented electrical steel. Acta Mater., 2020, vol. 185, pp. 540–54.

    Article  CAS  Google Scholar 

  13. T.Y. Kim, T.W. Na, H.S. Shim, Y.K. Ahn, Y.K. Jeong, H.N. Han, and N.M. Hwang: Misorientation characteristics at the growth front of abnormally-growing Goss grains in Fe–3%Si steel. Met. Mater. Int., 2021, vol. 27, pp. 5114–120.

    Article  CAS  Google Scholar 

  14. M. Mehdi, Y. He, E.J. Hilinski, and A. Edrisy: Texture evolution of a 28 wt pct Si non-oriented electrical steel and the elimination of the〈111〉//ND texture. Metall. Mater. Trans. A, 2019, vol. 50, pp. 3343–357.

    Article  CAS  Google Scholar 

  15. S. Takajo, C.C. Merriman, S.C. Vogel, and D.P. Field: In-situ EBSD study on the cube texture evolution in 3 wt pct Si steel complemented by ex-situ EBSD experiment from nucleation to grain growth. Acta Mater., 2019, vol. 166, pp. 100–12.

    Article  CAS  Google Scholar 

  16. D. Hawezy and S. Birosca: Disparity in recrystallization of α- & γ-fibers and its impact on Cube texture formation in non-oriented electrical steel. Acta Mater., 2021, vol. 216, 117141.

    Article  CAS  Google Scholar 

  17. M. Sanjari, M. Mehdi, Y. He, E.J. Hilinski, S. Yue, L.A.I. Kestens, and A. Edrisy: Tracking the evolution of annealing textures from individual deformed grains in a cross-rolled non-oriented electrical steel. Metall. Mater. Trans. A, 2017, vol. 48, pp. 6013–26.

    Article  CAS  Google Scholar 

  18. H.Z. Li, Z.Y. Liu, X.L. Wang, H.M. Ren, C.G. Li, G.M. Cao, and G.D. Wang: {114}〈481〉 Annealing texture in twin-roll casting non-oriented 65 wt pct Si electrical steel. J. Mater. Sci., 2017, vol. 52(1), pp. 247–59.

    Article  CAS  Google Scholar 

  19. G. Zu, X. Zhang, J. Zhao, Y. Wang, Y. Cui, Y. Yan, and Z. Jiang: Analysis of {411}〈148〉 recrystallisation texture in twin-roll strip casting of 4.5 wt pct Si non-oriented electrical steel. Mater. Lett., 2016, vol. 180, pp. 63–67.

    Article  CAS  Google Scholar 

  20. N. Zhang, P. Yang, and W. Mao: 001}〈120〉-{113}〈361〉 recrystallization textures induced by initial {001 grains and related microstructure evolution in heavily rolled electrical steel. Mater Charact, 2016, vol. 119, pp. 225–32.

    Article  CAS  Google Scholar 

  21. C.X. He, F.Y. Yang, G. Ma, X. Chen, and L. Meng: {411}〈148〉 texture in thin-gauge grain-oriented silicon steel. Acta Metall. Sin. (English Lett.), 2016, vol. 29(6), pp. 554–60.

    Article  CAS  Google Scholar 

  22. M. Sanjari, Y. He, E.J. Hilinski, S. Yue, and L.A.I. Kestens: Development of the {113}〈uvw〉 texture during the annealing of a skew cold rolled non-oriented electrical steel. Scip. Mater., 2016, vol. 124, pp. 179–83.

    Article  CAS  Google Scholar 

  23. H. Xu, Y. Xu, Y. He, S. Cheng, H. Jiao, S. Yue, and J. Li: Two-stage warm cross rolling and its effect on the microstructure, texture and magnetic properties of an Fe-65 wt pct Si non-oriented electrical steel. J. Mater. Sci., 2020, vol. 55(26), pp. 12525–2543.

    Article  CAS  Google Scholar 

  24. P. Gobernado, R.H. Petrov, J. Moerman, C. Barbatti, and L.A.I. Kestens: Recrystallization texture of ferrite steels: beyond the γ-fibre. Mater. Sci. Forum, 2012, vol. 702–703, pp. 790–93.

    Google Scholar 

  25. L. Kestens and S. Jacobs: Texture control during the manufacturing of nonoriented electrical steels. Texture Stress Microstruct., 2008, vol. 2008, 173083.

    Google Scholar 

  26. P. Gobernado, R.H. Petrov, and L.A.I. Kestens: Recrystallized {311}〈136〉 orientation in ferrite steels. Scrip. Mater., 2012, vol. 66(9), pp. 623–26.

    Article  CAS  Google Scholar 

  27. M. Sanjari, Y. He, E.J. Hilinski, S. Yue, and L.A. Kestens: Development of the {113}〈uvw〉 texture during the annealing of a skew cold rolled non-oriented electrical steel. Scrip. Mater., 2016, vol. 124, pp. 179–83.

    Article  CAS  Google Scholar 

  28. P. Gobernado, R. Petrov, D. Ruiz, E. Leunis, and L. Kestens: Texture evolution in Si-alloyed ultra low-carbon steels after severe plastic deformation. Adv. Eng. Mater., 2010, vol. 12(10), pp. 1077–81.

    Article  CAS  Google Scholar 

  29. L. Kestens, J. Jonas, P. Van Houtte, and E. Aernoudt: Orientation selection during static recrystallization of cross rolled non-oriented electrical steels. Text. Stress. Microst., 1996, vol. 26, pp. 321–35.

    Article  Google Scholar 

  30. K. Verbeken, L. Kestens, and M. Nave: Re-evaluation of the Ibe-Lücke growth selection experiment in a Fe–Si single crystal. Acta Mater., 2005, vol. 53(9), pp. 2675–682.

    Article  CAS  Google Scholar 

  31. K.K. Alaneme and E.A. Okotete: Recrystallization mechanisms and microstructure development in emerging metallic materials: a review. J. Sci., 2019, vol. 4(1), pp. 19–33.

    Google Scholar 

  32. F. Gao, Y. Chen, Q. Zhu, Y. Nan, S. Tang, Z. Cai, F. Zhang, W. Xue, X. Cai, F. Yu, and Z. Liu: Formation of recrystallization texture and its effect on deep drawability for high-purified ferritic stainless steel by two step cold rolling. Mater. Des., 2023, vol. 226, 111679.

    Article  CAS  Google Scholar 

  33. A. Després, J.D. Mithieux, and C.W. Sinclair: Modelling the relationship between deformed microstructures and static recrystallization textures: application to ferritic stainless steels. Acta Mater., 2021, vol. 219, 117226.

    Article  Google Scholar 

  34. F. Fang, J. Wang, J. Yang, Y. Zhang, Y. Wang, G. Yuan, X. Zhang, R.D.K. Misra, and G. Wang: Formation of η-oriented shear bands and its significant impact on recrystallization texture in strip-cast electrical steel. J. Market. Res., 2022, vol. 21, pp. 1770–783.

    CAS  Google Scholar 

  35. J. Saha, R. Saha, and P.P. Bhattacharjee: Microstructure and texture development in CoCrNi medium entropy alloy processed by severe warm cross-rolling and annealing. Intermetallics, 2022, vol. 143, 107463.

    Article  CAS  Google Scholar 

  36. W. Liu, Z. Liu, W. Luo, H. Liu, Q. Wang, and R. Zhang: Influence of Zr on grain orientation, texture, and mechanical properties in hot- and warm-rolled FeCrAl alloys. Mater Charact, 2022, vol. 183, 111602.

    Article  CAS  Google Scholar 

  37. Y. Li, Z. Du, J. Fan, Y. Lv, Y. Lv, L. Ye, and P. Li: Microstructure and texture evolution in warm-rolled fine-grained tungsten. Int. J. Refract Metal Hard Mater., 2021, vol. 101, 105690.

    Article  CAS  Google Scholar 

  38. J. Saha, R. Saha, and P.P. Bhattacharjee: Microstructure and texture of severely warm-rolled and annealed coarse-grained CoCrNi medium entropy alloy (MEA): a perspective on the initial grain size effect. J. Alloys Compd., 2022, vol. 904, 163954.

    Article  CAS  Google Scholar 

  39. H.T. Jiao, Y. Xu, L.Z. Zhao, R.D.K. Misra, Y.C. Tang, M.J. Zhao, D.J. Liu, Y. Hu, and M.X. Shen: Microstructural evolution and magnetic properties in strip cast non-oriented silicon steel produced by warm rolling. Mater.Charact., 2019, vol. 156, 109876.

    Article  CAS  Google Scholar 

  40. S. Lee and B.C. De Cooman: Effect of warm rolling on the rolling and recrystallization textures of non-oriented 3% Si steel. ISIJ Int., 2011, vol. 51(9), pp. 1545–552.

    Article  CAS  Google Scholar 

  41. J. Jonas: Effects of shear band formation on texture development in warm-rolled IF steels. J. Mater. Process. Technol., 2001, vol. 117(3), pp. 293–99.

    Article  CAS  Google Scholar 

  42. R. Machado, A. Kasama, A. Jorge Jr., C. Kiminami, W.B. Fo, and C. Bolfarini: Evolution of the texture of spray-formed Fe-65 wt% Si-10 wt% Al alloy during warm-rolling. Mater. Sci. Eng. A, 2007, vol. 449, pp. 854–57.

    Article  Google Scholar 

  43. H. Xu, Y. Xu, Y. He, S. Yue, and J. Li: Tracing the recrystallization of warm temper-rolled Fe-65 wt pct Si non-oriented electrical steel using a quasi in situ EBSD technique. J. Mater. Sci., 2020, vol. 55, pp. 17183–7203.

    Article  CAS  Google Scholar 

  44. X. Wang, W. Zhang, Z. Liu, H. Li, and G. Wang: Improvement on room-temperature ductility of 65 wt% Si steel by stress-relief annealing treatments after warm rolling. Mater Charact, 2016, vol. 122, pp. 206–14.

    Article  CAS  Google Scholar 

  45. H. Yu, K. Ming, H. Wu, Y. Yu, and X. Bi: Ordering suppression and excellent ductility in soft-magnetic Fe-6.5 wt pct Si sheet by Hf addition. J. Alloys Compd., 2018, vol. 766, pp. 186–93.

    Article  CAS  Google Scholar 

  46. H. Dun, Y. Zhang, N. Wang, Y. Wang, F. Fang, G. Yuan, R.D.K. Misra, and X. Zhang: Effect of Σ3 grain boundaries on microstructure and properties of oriented Fe-65 wt pct Si in twin-roll strip casting. J. Mag. Mag. Mater., 2022, vol. 559, p. 169552.

    Article  Google Scholar 

  47. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier Ltd, Oxford, 2004.

    Google Scholar 

  48. I. Samajdar, B. Verlinden, L. Kestens, and P.V. Houtte: Physical parameters related to the developments of recrystallization textures in an ultra low carbon steel. Acta Mater., 1998, vol. 47(1), pp. 55–65.

    Article  Google Scholar 

  49. R.K. Ray, J.J. Jonas, and R.E. Hook: Cold rolling and annealing textures in low carbon and extra low carbon steels. Metall. Rev., 1994, vol. 39(4), pp. 129–72.

    Article  CAS  Google Scholar 

  50. R.L. Every and M. Hatherly: Oriented nucleation in low-carbon steels. Texture, 1974, vol. 1(3), pp. 183–94.

    Article  CAS  Google Scholar 

  51. R. Sandsttrom: Subgrain growth occurring by boundary migration. Acta Metall., 1977, vol. 25(8), pp. 905–11.

    Article  Google Scholar 

  52. Y. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, S. Kalidindi, and L. Zuo: Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Mater., 2014, vol. 76(9), pp. 106–17.

    Article  CAS  Google Scholar 

  53. H. Jiao, Y. Xu, L. Zhao, R. Misra, Y. Tang, D. Liu, Y. Hu, M. Zhao, and M. Shen: Texture evolution in twin-roll strip cast non-oriented electrical steel with strong Cube and Goss texture. Acta Mater., 2020, vol. 199(10), pp. 311–25.

    Article  CAS  Google Scholar 

  54. O. Engler: On the influence of orientation pinning on growth selection of recrystallisation. Acta Mater., 1998, vol. 46(5), pp. 1555–68.

    Article  CAS  Google Scholar 

  55. D.J. Jensen: Growth rates and misorientation relationships between growing nuclei/grains and the surrounding deformed matrix during recrystallization. Acta Metall. Mater., 1995, vol. 43(11), pp. 4117–29.

    Article  CAS  Google Scholar 

  56. R. Saha and R.K. Ray: Effect of severe cold rolling and annealing on the development of texture, microstructure and grain boundary character distribution in an interstitial free (IF) steel. ISIJ Int., 2008, vol. 48(7), pp. 976–83.

    Article  CAS  Google Scholar 

  57. K. Verbeken, L. Kestens, and J. Jonas: Microtextural study of orientation change during nucleation and growth in a cold rolled ULC steel. Scrip. Mater., 2003, vol. 48(10), pp. 1457–62.

    Article  CAS  Google Scholar 

  58. T. Nguyen-Minh, J. Sidor, R. Petrov, and L. Kestens: Occurrence of shear bands in rotated Goss ({110}〈110〉) orientations of metals with bcc crystal structure. Scrip. Mater., 2012, vol. 67(12), pp. 935–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (No. 52205385), Ningbo Science and Technology Plan Project (Nos. 2021J098 and 2020Z110). Y. H. acknowledges the financial support from Natural Resources Canada through the Program of Energy Research and Development (PERD). H. X. is grateful to the support from Chinese Scholarship Council (No. 201806080099). The authors are grateful to Jian Li and Renata Zavadil for assistance in EBSD characterization.

Author Contribution

Haijie Xu: Conceptualization, Investigation, Writing—original draft. Youliang He: Conceptualization, Resources, Writing—review & editing, Funding acquisition. Xuedao Shu: Supervision, Resources, Writing—review & editing, Funding acquisition. Yunbo Xu: Project administration, Supervision, Funding acquisition. Steve Yue: Supervision, Resources, Funding acquisition.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Competing interest

There are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haijie Xu or Youliang He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., He, Y., Shu, X. et al. The Growth of {1 1 h}〈1 2 1/h〉 (α*-Fiber) Grains and the Evanesce of {001}〈100〉 (Cube) Grains During the Recrystallization of Warm Rolled Fe-6.5 Wt Pct Si Non-oriented Electrical Steel. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07370-3

Navigation