Skip to main content
Log in

Tracking the Evolution of Annealing Textures from Individual Deformed Grains in a Cross-Rolled Non-oriented Electrical Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of microtexture and microstructure of a cross-rolled 0.88 wt pct Si non-oriented electrical steel was investigated using a quasi-in situ electron backscatter diffraction (EBSD) technique, where individual deformed grains with various initial orientations were tracked during annealing at the same temperature for different times. The textures recrystallized from different deformed grains were compared, and the observations were examined against the preferential nucleation and selective growth theories. Although the cold deformed 〈111〉//ND (normal direction) grains recrystallized first during annealing, they started with significantly different nucleation textures, i.e., γ-fiber (〈111〉//ND) in {111}〈112〉 deformed grains, and cube ({001}〈100〉) in {111}〈110〉 deformed grains. Both recrystallization textures were quite stable until the steel was completely recrystallized. Significant grain growth in these grains was only observed after the recrystallization was complete, which resulted in considerably different final textures as compared to the initial nucleation textures. Deformed grains with a rotated cube ({001}〈111〉) orientation were the last to recrystallize, and the recrystallization was accomplished mainly through the “invading” of neighboring grains into the deformed matrix. Analysis of the misorientations between the rotated cube grain (the matrix) and their neighboring recrystallized grains showed that the preferred growth of some of the grains can be attributed to the high grain boundary mobility associated with the coincident site lattices (CSL). During the course of recrystallization, some \( \{ 11{\text{h}}\} \left\langle {12\frac{1}{h}} \right\rangle \) and rotated cube grains also formed, but they disappeared quickly when the annealing time was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.J.G. Landgraf, JOM 2012, vol. 64, pp. 764-771.

    Article  Google Scholar 

  2. L. Kestens and S. Jacobs, Texture, Stress, and Microstructure 2008, vol. 2008, pp. 1-9.

    Google Scholar 

  3. J. Barros, J. Schneider, K. Verbeken and Y. Houbaert, Journal of Magnetism and Magnetic Materials 2008, vol. 320, pp. 2490-2493.

    Article  Google Scholar 

  4. M. Shiozaki and Y. Kurosaki, Journal of Materials Engineering 1989, vol. 11, pp. 37-43.

    Article  Google Scholar 

  5. H. Pan, Z. Zhang and J. Xie, Journal of Magnetism and Magnetic Materials 2016, vol. 401, pp. 625-632.

    Article  Google Scholar 

  6. B. Cullity and C. Graham, Introduction to Magnetic Materials, Second Edition 2009, pp. 175-195.

    Google Scholar 

  7. K. Matsumura and B.Fukuda, IEEE Transactions on Magnetics 1984, vol. 20, pp. 1533-1538.

    Article  Google Scholar 

  8. Hai-Tao Liu, Zhen-Yu Liu, Yu Sun, Fei Gao and Guo-Dong Wang, Materials Letters 2013, vol. 91, pp. 150-153.

    Article  Google Scholar 

  9. Jong-Tae Park and J. A. Szpunar, Acta Materialia 2003, vol. 51, pp. 3037-3051.

    Article  Google Scholar 

  10. J.S.M. Pedrosa, S.d.C. Paolinelli and André B. Cota,, Journal of Magnetism and Magnetic Materials 2015, vol. 393, pp. 146-150.

    Article  Google Scholar 

  11. P. Gobernado, R. Petrov, D. Ruiz, E. Leunis and L. A. I. Kestens, Advanced Engineering Materials 2010, vol. 12, pp. 1077-1081.

    Article  Google Scholar 

  12. Sebald, R. and G. Gottstein, Acta Materialia, 2002. 50(6): p. 1587-1598.

    Article  Google Scholar 

  13. Rollett, A., et al., Recrystallization and related annealing phenomena. 2004: Elsevier.

    Google Scholar 

  14. Mehdi Sanjari, Youliang He, Erik J. Hilinski, Steve Yue and Leo A. I. Kestens, Journal of Materials Science 2017, vol. 52, pp. 3281-3300.

    Article  Google Scholar 

  15. He, Y. and E.J. Hilinski, Journal of Magnetism and Magnetic Materials, 2016. 405: p. 337-352.

    Article  Google Scholar 

  16. J. Jonas and L. Kestens, ASM Handbook Volume 14A 2005, vol. 14, pp. 685-700.

    Google Scholar 

  17. K. Hamad and Y.G. Ko, Metallurgical and Materials Transactions A 2016, vol. 47, pp. 2319-2334.

    Article  Google Scholar 

  18. L. Kestens and J. J. Jonas, Metallurgical and Materials Transactions A 1996, vol. 27, pp. 155-164.

    Article  Google Scholar 

  19. L.A.I. Kestens and H Pirgazi, Materials Science and Technology 2016, vol. 32, pp. 1303-1315.

    Article  Google Scholar 

  20. Y. H. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, S. R. Kalidindi and L. Zuo, Acta Materialia 2014, vol. 76, pp. 106-117.

    Article  Google Scholar 

  21. R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. Juul Jensen, M. E. Kassner, W. E. King, T. R. McNelley, H. J. McQueen and A. D. Rollett, Materials Science and Engineering: A 1997, vol. 238, pp. 219-274.

    Article  Google Scholar 

  22. D Kuhlmann-Wilsdorf and Niels Hansen, Scripta metallurgica et materialia 1991, vol. 25, pp. 1557-1562.

    Article  Google Scholar 

  23. P Cizek, BA Parker and DG McCulloch, Materials Science and Engineering: A 1995, vol. 194, pp. 201-210.

    Article  Google Scholar 

  24. P. Cizek, B.P. Wynne and B.A. Parker, Scripta materialia 1996, vol. 35, pp. 1129-1134.

    Article  Google Scholar 

  25. T. Nguyen-Minh, J. J. Sidor, R. H. Petrov and L. A. I. Kestens, Scripta Materialia 2012, vol. 67, pp. 935-938.

    Article  Google Scholar 

  26. I. Samajdar, B. Verlinden, P.V. Houtte and D. Vanderschueren, Materials Science and Engineering: A 1997, vol. 238, pp. 343-350.

    Article  Google Scholar 

  27. M. Sanjari, Y. He, E. J. Hilinski, S. Yue and L. A. I. Kestens, Scripta Materialia 2016, vol. 124, pp. 179-183.

    Article  Google Scholar 

  28. J. J. Sidor, K. Verbeken, E. Gomes, J. Schneider, P. R. Calvillo and L.A. I. Kestens, Materials Characterization 2012, vol. 71, pp. 49-57.

    Article  Google Scholar 

  29. K. Ushioda and W. B. Hutchinson, ISIJ International 1989, vol. 29, pp. 862-867.

    Article  Google Scholar 

  30. J. T. Park and J. A. Szpunar, ISIJ International 2005, vol. 45, pp. 743-749.

    Article  Google Scholar 

  31. Z.W. Zhang, W.H. Wang, Y. Zou, I. Baker, D. Chen, Y.F. Liang, Journal of Alloys and Compounds 2015, vol. 639, pp.40-44.

    Article  Google Scholar 

  32. Y. Huang, F.J. Humphreys,, Acta Materialia 2000, vol. 48, pp. 2017-2030.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by Natural Resources Canada through the Program of Energy Research and Development, and by Natural Sciences and Engineering Research Council of Canada. The authors are grateful to Michael Attard for his help on the cold rolling, and to Renata Zavadil and Jian Li for their assistance on EBSD characterization. Dr. Mark Kozdras is thanked for his careful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youliang He.

Additional information

Manuscript submitted July 15, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjari, M., Mehdi, M., He, Y. et al. Tracking the Evolution of Annealing Textures from Individual Deformed Grains in a Cross-Rolled Non-oriented Electrical Steel. Metall Mater Trans A 48, 6013–6026 (2017). https://doi.org/10.1007/s11661-017-4370-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4370-9

Navigation