Skip to main content
Log in

Surface Damage and Microstructure Evolution of Copper-Containing Antibacterial Stainless Steel During Quasi-In Situ Tensile Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The quasi-in situ tensile test of copper-containing antibacterial stainless steel was carried out by Shimadzu AGS-100 KN universal testing machine. The digital image correlation (DIC) was used to analyze the surface damage of different tensile strains during the tensile process of copper-containing stainless steel, and the damage equations of large deformation area and small deformation area were established. The microstructure evolution of copper-containing antibacterial stainless steel was analyzed by electron backscatter diffraction (EBSD), X-ray diffractometer (XRD), and transmission electron microscope (TEM). The experimental results show that as the strain increases, the LAGBs gradually increase, and the HAGBs and twins gradually decrease. Austenite and martensite cross each other, and some austenite are transformed into martensite. Dislocation slip affects twins, and twins continue to affect dislocation slip. The precipitation has pinning and hindering effects on dislocations and grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Ren, L. Nan, and K. Yang: Mater. Des., 2011, vol. 32, pp. 2374–79.

    Article  CAS  Google Scholar 

  2. T. Xi, M.B. Shahzad, D. Xu, Z.Q. Sun, J.L. Zhao, C.G. Yang, M. Qi, and K. Yang: Mater. Sci. Eng. C, 2017, vol. 71, pp. 1079–85.

    Article  CAS  Google Scholar 

  3. N. Li, J.L. Cheng, and K. Yang: J. Mater. Sci. Technol., 2012, vol. 28, pp. 1067–70.

    Article  Google Scholar 

  4. G.H. Zhao, J.C. Li, J. Li, H.Y. Li, L.F. Ma, and Y.G. Li: Adv. Eng. Mater., 2023, vol. 10, pp. 1–14.

    CAS  Google Scholar 

  5. W.J. Gao, J.X. Lu, J.L. Zhou, L. Liu, J. Wang, Y.F. Zhang, and Z. Zhang: Mater. Sci. Eng. A, 2022, vol. 861, pp. 144–61.

    Article  Google Scholar 

  6. S.N. Onlaghi, A. Sadeghi, and M. Karimpour: Mater. Sci. Eng. A, 2022, vol. 32, pp. 142–56.

    Google Scholar 

  7. S.N. Onlaghi, A. Sadeghi, M. Karimpour, and M. Pekguleryuz: Mater. Sci. Eng. A, 2021, vol. 812, pp. 101–07.

    Google Scholar 

  8. T.F. Morgeneyer, T.T. Thomas, L. Helfen, T. Baumbach, I. Sinclair, S. Roux, and F.S. Hild: Acta Mater., 2014, vol. 69, pp. 78–91.

    Article  ADS  CAS  Google Scholar 

  9. H.L. Suo, L.J. Wang, X.Y. Wu, Y.T. Ji, X.F. Wang, L. Ma, M. Liu, L. Wang, Q.L. Wang, and Z.L. Zhang: Mater. Today. Commun., 2023, vol. 35, pp. 105–18.

    Google Scholar 

  10. H. Wang, H.Y. Niu, H. Wu, R.G. Li, and G.H. Fan: Mater., 2022, vol. 15, pp. 28–41.

    Google Scholar 

  11. G.H. Zhao, M.X. Sun, J. Li, H.Y. Li, L.F. Ma, and Y.G. Li: Mater. Today. Commun., 2022, vol. 33, pp. 104–12.

    Google Scholar 

  12. A. Kundu, D.P. Field, and P.C. Chakraborti: Mater. Sci. Eng. A, 2020, vol. 773, pp. 138–45.

    Article  Google Scholar 

  13. K. Yvell, T.M. Grehk, P. Hedström, A. Borgenstam, and G. Engberg: Mater Charact, 2018, vol. 141, pp. 8–18.

    Article  CAS  Google Scholar 

  14. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, and J.E. Wittig: Acta Mater., 2015, vol. 100, pp. 178–90.

    Article  ADS  CAS  Google Scholar 

  15. K. Yvell, T.M. Grehk, P. Hedström, A. Borgenstam, and G. Engberg: Mater Charact, 2018, vol. 135, pp. 228–37.

    Article  CAS  Google Scholar 

  16. G.H. Zhao, R.F. Zhang, J. Li, H.Y. Li, L.F. Ma, and Y.G. Li: Mater. Today. Commun., 2022, vol. 33, 104472.

    Article  CAS  Google Scholar 

  17. N. Bibhanshu, M.N. Gussev, C.P. Massey, and K.G. Field: Mater. Sci. Eng. A, 2022, vol. 832, p. 142373.

    Article  CAS  Google Scholar 

  18. G.H. Zhao, J.C. Li, R.F. Zhang, H.Y. Li, J. Li, and L.F. Ma: Mater Charact, 2023, vol. 197, pp. 112–20.

    Google Scholar 

  19. L. Liu, W. Huang, M. Ruan, and Z.W. Chen: Mater. Sci. Eng. A, 2023, vol. 875, p. 145097.

    Article  CAS  Google Scholar 

  20. C. Zhang, R.H. Ya, M. Sun, R.B. Ma, J.G. Cui, and Z.P. Li: Mater. Today. Commun., 2023, vol. 35, p. 105522.

    Article  CAS  Google Scholar 

  21. H. Fallahi: Mater. Sci. Eng. A, 2022, vol. 857, p. 104057.

    Article  Google Scholar 

  22. S.G. Li, C.Y. Guo, L.L. Hao, and Y.L. Kang: Mater. Sci. Eng. A, 2019, vol. 759, pp. 624–32.

    Article  CAS  Google Scholar 

  23. S. Narayanswamy, R. Saha, and P.P. Bhattacharjee: Mater Charact, 2021, vol. 171, pp. 110–16.

    Article  Google Scholar 

  24. M. Rizwan, J.X. Lu, R. Ullah, Y.F. Zhang, and Z. Zhang: Mater. Sci. Eng. A, 2022, vol. 857, pp. 165–69.

    Article  Google Scholar 

  25. X.Q. Li, C.L. Cheng, Q.C. Le, X. Zhou, Q.Y. Liao, X.R. Chen, Y.H. Jia, and P. Wang: J. Alloys Compd., 2019, vol. 805, pp. 947–56.

    Article  CAS  Google Scholar 

  26. F. Zhang, A. Ruimi, P.C. Wo, and D.P. Field: Mater. Sci. Eng. A, 2016, vol. 659, pp. 93–103.

    Article  CAS  Google Scholar 

  27. S.B. Zhou, P. Peng, J.Y. Zhang, T.T. Liu, G.M. Sheng, and J. She: Mater. Sci. Eng. A, 2021, vol. 821, p. 141567.

    Article  CAS  Google Scholar 

  28. J.T. Liu, G.Q. Liu, B.F. Hu, Y.P. Song, Y.W. Zhang, and Y. Tao: Trans. Mater. Heat. Treat., 2005, vol. 26, pp. 12–15.

    Google Scholar 

  29. B.F. Hu, H.M. Chen, K.S. Jin, and H.Y. Li: Trans. Nonferrous Met. Soc. China, 2004, vol. 14, pp. 901–06.

    CAS  Google Scholar 

  30. B. Gao, L. Wang, Y. Liu, J.L. Liu, Y.D. Sui, W.W. Sun, X.F. Chen, L.R. Xiao, and H. Zhou: Scripta Mater., 2023, vol. 234, pp. 126–36.

    Google Scholar 

  31. X.Y. San, B. Zhang, B. Wu, X.X. Wei, E.E. Oguzie, and X.L. Ma: Corros. Sci., 2018, vol. 130, pp. 143–52.

    Article  CAS  Google Scholar 

  32. X. Xu, Z. Liu, and Y. Li: Trans. Nonferrous Met. Soc. China, 2008, vol. 18, pp. 1047–52.

    Article  CAS  Google Scholar 

  33. Z. Liu, S. Bai, and X. Zhou: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2217–22.

    Article  Google Scholar 

  34. G.H. Zhao, J. Li, Z.H. Cai, H.Y. Li, H.T. Liu, and L.F. Ma: Metall. Res. Technol, 2022, vol. 119, pp. 309–14.

    Article  CAS  Google Scholar 

  35. G.H. Zhao, J. Zhang, J. Li, Z.H. Cai, H.Y. Li, H.T. Liu, and L.F. Ma: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 281–94.

    Article  CAS  Google Scholar 

  36. J.W. Tang, L. Chen, Z.G. Li, B.H. Que, G.Q. Zhao, and C.S. Zhang: J. Mater. Sci. Technol., 2023, vol. 155, pp. 89–101.

    Article  CAS  Google Scholar 

  37. N. Guo, Z.M. Zhang, Q.S. Dong, H.B. Yu, B. Song, L.J. Chai, C. Liu, Z.W. Yao, and M.R. Daymond: Mater. Des., 2018, vol. 143, pp. 150–59.

    Article  CAS  Google Scholar 

  38. C. Zhang, R.H. Ya, M. Sun, R.B. Ma, J.Y. Cui, Z.P. Li, and W.H. Tian: Mater. Today. Commun., 2023, vol. 35, pp. 115–17.

    Article  Google Scholar 

  39. J.A. Liu, W.H. Zhang, F.Q. Mei, X. Xin, Y.C. Cao, and C.W. Zhu: J. Mater. Res. Technol., 2023, vol. 24, pp. 5792–5804.

    Article  CAS  Google Scholar 

  40. G.H. Zhao, J. Zhang, and J. Li: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 1–14.

    Article  Google Scholar 

  41. J. Tai, B. Zhou, and M.L. Sui: J. Chin. Electron Microsc. Soc., 2017, vol. 36, pp. 5–9.

    Google Scholar 

  42. Q. Wang, R. Zhou, Y. Li, and B. Geng: Mater Charact, 2020, vol. 159, pp. 109–203.

    CAS  Google Scholar 

  43. J. Miao, S. Sutton, and A.A. Luo: Mater. Sci. Eng. A, 2020, vol. 777, pp. 139–42.

    Article  Google Scholar 

  44. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514–22.

    Article  CAS  Google Scholar 

  45. J.W. Liu, X. Luo, B. Huang, Y.Q. Yang, W.J. Lu, X.W. Yi, and H. Wang: Acta Metall. Sin. (Engl. Lett.), 2023, vol. 36, pp. 758–70.

    Article  CAS  Google Scholar 

  46. C.L. Miao, C.J. Shang, H.S. Zurob, G.D. Zhang, and S.V. Subramanian: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 665–76.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The project was supported by the Fundamental Research Program of Shanxi Province (20210302123207 and 20210302124009), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2021L292), Taiyuan University of Science and Technology Scientific Research Initial Funding (20212026), the Shanxi Outstanding Doctorate Award Funding Fund (20222042), Taiyuan University of Science and Technology Graduate Innovation Project (BY2022004 and SY2022088), and the Coordinative Innovation Center of Taiyuan Heavy Machinery Equipment.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Guo, S., Zhao, G. et al. Surface Damage and Microstructure Evolution of Copper-Containing Antibacterial Stainless Steel During Quasi-In Situ Tensile Process. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07364-1

Navigation