Skip to main content
Log in

Nano-Twinning and Martensitic Transformation Behaviors in 316L Austenitic Stainless Steel During Large Tensile Deformation

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The evolutions of nano-twins and martensitic transformation in 316L austenitic stainless steel during large tensile deformation were studied by electron backscatter diffraction (EBSD) technology and transmission electron microscopy (TEM) in detail. The results show that due to the low stacking fault energy of the steel, phase transformation induced plasticity (TRIP) and twinning induced plasticity (TWIP) coexist during the tensile deformation. The deformation firstly induces the formation of deformation twins, and dislocation pile-up is caused by the reduction of the dislocation mean free path (MFP) or grain refinement due to the twin boundaries, which further induces the martensitic transformation. With the increase of tensile deformation, a large number of nano-twins and α’-martensite appear, and the width of nano-twins decreases gradually, meanwhile the frequency of the intersecting deformation twins increases. The martensitic transformation can be divided into two types: γ-austenite → α’-martensite and γ-austenite → ε-martensite. α’-martensite is mainly distributed near the twin boundaries, especially at the intersection of twins, while ε-martensite and stacking faults exist in the form of transition products between the twins and the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.D. Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142, 283 (2017)

    Article  Google Scholar 

  2. O. Bouaziz, S. Allain, P.C. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mat. Sci. 15, 141 (2011)

    Article  CAS  Google Scholar 

  3. E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 128, 120 (2017)

    Article  CAS  Google Scholar 

  4. C. Gauss, I. Filho, M. Sandim, P.A. Suzuki, H. Sandim, Mater. Sci. Eng. A 651, 507 (2015)

    Article  Google Scholar 

  5. Y.F. Shen, Y.D. Wang, X.P. Liu, X. Sun, R.L. Peng, S.Y. Zhang, L. Zuo, P.K. Liaw, Acta Mater. 61, 6093 (2013)

    Article  CAS  Google Scholar 

  6. H. Zhi, C. Zhang, S. Antonov, H. Yu, Y. Su, Acta Mater. 195, 371 (2020)

    Article  CAS  Google Scholar 

  7. M. Kang, W. Woo, Y.K. Lee, B.S. Seong, Mater. Lett. 76, 93 (2012)

    Article  CAS  Google Scholar 

  8. Q. Xie, Y. Chen, P. Yang, Z. Zhao, Y.D. Wang, K. An, Scripta Mater. 150, 168 (2018)

    Article  CAS  Google Scholar 

  9. S. Allain, J.P. Chateau, O. Bouaziz, Mater. Sci. Eng. A 387–389, 143 (2004)

    Article  Google Scholar 

  10. L. Rémy, Metall. Trans. A 12, 387 (1981)

    Article  Google Scholar 

  11. T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, S.J. Kim, Acta Mater. 58, 3173 (2010)

    Article  CAS  Google Scholar 

  12. S.K. Mishra, S.M. Tiwari, A.M. Kumar, L.G. Hector, Metall. Mater. Trans. A 43, 1598 (2012)

    Article  CAS  Google Scholar 

  13. L. Remy, A. Pineau, Mater. Sci. Eng. 28, 99 (1977)

    Article  CAS  Google Scholar 

  14. S. Vercammen, B.C.D. Cooman, N. Akdut, B. Blanpain, P. Wollants, Steel Res. Int. 14, 370 (2003)

    Article  Google Scholar 

  15. L. Chen, Z. Yang, X. Qin, Acta Metall. Sin. Engl. Lett. 26, 1 (2013)

    Article  CAS  Google Scholar 

  16. H. Jacques, Scripta Mater. 63, 961 (2010)

    Article  Google Scholar 

  17. S. Mishra, M. Yadava, K.N. Kulkarni, N.P. Gurao, Acta Mater. 178, 99 (2019)

    Article  CAS  Google Scholar 

  18. L. Remy, Acta Metall. 26, 443 (1978)

    Article  CAS  Google Scholar 

  19. S.L. Wong, M. Madivala, U. Prahl, F. Roters, D. Raabe, Acta Mater. 118, 140 (2016)

    Article  CAS  Google Scholar 

  20. J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39, 1 (1995)

    Article  Google Scholar 

  21. J. Narayan, Y.T. Zhu, Appl. Phys. Lett. 92, 1275 (2008)

    Google Scholar 

  22. M. Niewczas, Dislocations in Solids, vol. 13 (Elsevier, 2007), pp.263–364

    Book  Google Scholar 

  23. Y.T. Zhu, J. Narayan, J.P. Hirth, S. Mahajan, X.L. Wu, X.Z. Liao, Acta Mater. 57, 3763 (2009)

    Article  CAS  Google Scholar 

  24. Q. Xie, Z. Pei, J. Liang, D. Yu, Z. Zhao, P. Yang, R. Li, M. Eisenbach, K. An, Acta Mater. 161, 273 (2018)

    Article  CAS  Google Scholar 

  25. T.H. Ahn, S.B. Lee, K.T. Park, K.H. Oh, H.N. Han, Mater. Sci. Eng. A 598, 56 (2014)

    Article  CAS  Google Scholar 

  26. J. Liu, Y. Jin, X. Fang, C. Chen, Q. Feng, X. Liu, Y. Chen, T. Suo, F. Zhao, T. Huang, Sci. Rep. 6, 35345 (2016)

    Article  CAS  Google Scholar 

  27. Y. Tomita, T. Iwamoto, Int. J. Mech. Sci. 37, 1295 (1995)

    Article  Google Scholar 

  28. X.L. Wu, M.X. Yang, F.P. Yuan, L. Chen, Y.T. Zhu, Acta Mater. 112, 337 (2016)

    Article  CAS  Google Scholar 

  29. X.S. Yang, S. Sun, H.H. Ruan, S.Q. Shi, T.Y. Zhang, Acta Mater. 136, 347 (2017)

    Article  CAS  Google Scholar 

  30. S.I. Baik, Y.W. Kim, Materials 10, 100677 (2020)

    CAS  Google Scholar 

  31. D. Goodchild, W.T. Roberts, D.V. Wilson, Acta Metall. 18, 1137 (1970)

    Article  CAS  Google Scholar 

  32. I.R. Souza Filho, A. Dutta, D.R. Almeida Junior, W. Lu, M.J.R. Sandim, D. Ponge, H.R.Z. Sandim, D. Raabe, Acta Mater. 197, 123 (2020)

    Article  CAS  Google Scholar 

  33. K.H. Kwon, B.C. Suh, S.I. Baik, Y.W. Kim, N.J. Kim, Sci. Technol. Adv. Mater. 14, 014204 (2013)

    Article  CAS  Google Scholar 

  34. Z.Y. Tang, R.D.K. Misra, M. Ma, N. Zan, Z.Q. Wu, H. Ding, Mater. Sci. Eng. A 624, 186 (2015)

    Article  CAS  Google Scholar 

  35. J.K. Hwang, I.C. Yi, I.H. Son, J.Y. Yoo, B. Kim, A. Zargaran, N.J. Kim, Mater. Sci. Eng. A 644, 41 (2015)

    Article  CAS  Google Scholar 

  36. S. Martin, C. Ullrich, D. Rafaja, Mater. Today Proc. 2, S643 (2015)

    Article  Google Scholar 

  37. M. Soleimani, A. Kalhor, H. Mirzadeh, Mater. Sci. Eng. A 795, 140023 (2020)

    Article  CAS  Google Scholar 

  38. D. Molnar, X. Sun, S. Lu, W. Li, G. Engberg, L. Vitos, Mater. Sci. Eng. A 759, 490 (2019)

    Article  CAS  Google Scholar 

  39. R.E. Schramm, R.P. Reed, Metall. Trans. A 6, 1345 (1975)

    Article  Google Scholar 

  40. K.S. Cheong, E.P. Busso, J. Mech. Phys. Solids 54, 671 (2006)

    Article  CAS  Google Scholar 

  41. B. Gwalani, W. Fu, M. Olszta, J. Silverstein, D.R. Yadav, P. Manimunda, A. Guzman, K. Xie, A. Rohatgi, S. Mathaudhu, Materials 18, 101146 (2021)

    CAS  Google Scholar 

  42. M. Kamaya, Mater. Charact. 60, 125 (2009)

    Article  CAS  Google Scholar 

  43. M. Kamaya, A.J. Wilkinson, J.M. Titchmarsh, Nucl. Eng. Des. 235, 713 (2005)

    Article  CAS  Google Scholar 

  44. X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Y. Zhu, Acta Mater. 116, 43 (2016)

    Article  CAS  Google Scholar 

  45. A. Harte, M. Atkinson, M. Preuss, J. Fonseca, Acta Mater. 195, 555 (2020)

    Article  CAS  Google Scholar 

  46. R.R. Shen, P. Efsing, Ultramicroscopy 184, 156 (2017)

    Article  Google Scholar 

  47. L. Meng, P. Yang, Q. Xie, H. Ding, Z. Tang, Scripta Mater. 56, 931 (2007)

    Article  CAS  Google Scholar 

  48. E. Bouyne, H.M. Flower, T.C. Lindley, A. Pineau, Scripta Mater. 39, 295 (1998)

    Article  CAS  Google Scholar 

  49. J. Xie, H. Fu, Z. Zhang, Y. Jiang, Intermetallics 23, 20 (2012)

    Article  CAS  Google Scholar 

  50. K.R. Limmer, J.E. Medvedeva, D. Aken, N.I. Medvedeva, Comp. Mater. Sci. 99, 253 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shaanxi Province, China (No. 2021JM-061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Luo.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JW., Luo, X., Huang, B. et al. Nano-Twinning and Martensitic Transformation Behaviors in 316L Austenitic Stainless Steel During Large Tensile Deformation. Acta Metall. Sin. (Engl. Lett.) 36, 758–770 (2023). https://doi.org/10.1007/s40195-022-01487-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-022-01487-3

Keywords

Navigation