Skip to main content

Advertisement

Log in

A Feasible Thermomechanical Process of a Duplex-Phase Fe–Mn–Al–C Steel for Significantly Increasing Ductility Without Loss of Strength

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The controlled thermomechanical treatment was conducted for the mechanical property improvement of Fe–Mn–Al–C duplex low-density steels. The tensile ductility experienced a significant increase from 37 to 66 pct by decreasing the reduction of cold rolling from 30 to 20 pct during the thermomechanical process, and the ultimate tensile strength was also slightly improved. The enhanced strength and markedly improved ductility can be primarily attributed to a much higher work hardening ability resulting from a more efficient transformation-induced plasticity (TRIP) effect. The higher work hardening ability is mainly manifested by the occurrence of a remarkable recovery of work hardening rate, which can even cause an anomalous secondary work hardening occurring in the tensile deformation of the thermomechanically treated duplex steel. Decreasing cold rolling reduction in the thermomechanical process can introduce less dislocations, and then larger austenite grain size is obtained after recovery and recrystallization during annealing process, so that the austenite with an appropriate stability can ensure the TRIP effect to work continuously up to much higher strain levels. As a result, a strength-ductility combination of 58 GPa pct was achieved in this investigated duplex steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Kim, D.-W. Suh, and N.J. Kim: Sci. Technol. Adv. Mater., 2013, vol. 14, 014205. https://doi.org/10.1088/1468-6996/14/1/014205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. F. Zhao, P. Chen, B. Xu, Q. Yu, R.D.K. Misra, G. Wang, and H. Yi: Mater Charact, 2021, vol. 179, 111327. https://doi.org/10.1016/j.matchar.2021.111327.

    Article  CAS  Google Scholar 

  3. R. Rana, C. Lahaye, and R.K. Ray: JOM, 2014, vol. 66, pp. 1734–46. . https://doi.org/10.1007/s11837-014-1126-5.

    Article  Google Scholar 

  4. A. Grajcar, A. Skowronek, and K. Radwanski: Mater. Sci. Eng. A, 2022, vol. 830, 142300. https://doi.org/10.1016/j.msea.2021.142300.

    Article  CAS  Google Scholar 

  5. E. Frutos, D.G. Morris, and M.A. Munoz-Morris: Intermetallics, 2013, vol. 38, pp. 1–3. . https://doi.org/10.1016/j.intermet.2013.02.012.

    Article  CAS  Google Scholar 

  6. P.P. Liu, M.Z. Zhao, Y.M. Zhu, J.W. Bai, F.R. Wan, and Q. Zhan: J. Alloys Compd., 2013, vol. 579, pp. 599–605. . https://doi.org/10.1016/j.jallcom.2013.07.085.

    Article  CAS  Google Scholar 

  7. J. Liang, Z. Zhao, B. Guo, B. Sun, and D. Tang: Mater. Res. Express, 2019, vol. 6, 026502. https://doi.org/10.1088/2053-1591/aaea34.

    Article  CAS  Google Scholar 

  8. S. Chen, R. Rana, A. Haldar, and R.K. Ray: Progr. Mater. Sci., 2017, vol. 89, pp. 345–91. . https://doi.org/10.1016/j.pmatsci.2017.05.002.

    Article  CAS  Google Scholar 

  9. M.-S. Kim and Y.-B. Kang: Calphad, 2015, vol. 51, pp. 89–103. . https://doi.org/10.1016/j.calphad.2015.08.004.

    Article  CAS  Google Scholar 

  10. H. Song, S.S. Sohn, J.-H. Kwak, B.-J. Lee, and S. Lee: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2674–85. . https://doi.org/10.1007/s11661-016-3433-7.

    Article  CAS  Google Scholar 

  11. X. Li, R. Song, N. Zhou, and J. Li: Mater. Sci. Eng. A, 2018, vol. 709, pp. 97–104. . https://doi.org/10.1016/j.msea.2017.10.039.

    Article  CAS  Google Scholar 

  12. K.-G. Chin, H.-J. Lee, J.-H. Kwak, J.-Y. Kang, and B.-J. Lee: J. Alloys Compd., 2010, vol. 505, pp. 217–23. . https://doi.org/10.1016/j.jallcom.2010.06.032.

    Article  CAS  Google Scholar 

  13. H.L. Yi, P. Chen, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3512–18. . https://doi.org/10.1007/s11661-014-2267-4.

    Article  CAS  Google Scholar 

  14. S.S. Sohn, H. Song, J.-H. Kwak, and S. Lee: Sci. Rep., 2017, vol. 7, p. 1927. . https://doi.org/10.1038/s41598-017-02183-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O.A. Zambrano: J. Eng. Mater. Technol., 2016, vol. 138, 041010. https://doi.org/10.1115/1.4033632.

    Article  CAS  Google Scholar 

  16. P. Chen, R. Chen, and X.-W. Li: Mater Charact, 2022, vol. 189, 111954. https://doi.org/10.1016/j.matchar.2022.111954.

    Article  CAS  Google Scholar 

  17. G. Frommeyer, E.J. Drewes, and B. Engl: Revue de Métallurgie, 2000, vol. 97, pp. 1245–53. . https://doi.org/10.1051/metal:2000110.

    Article  CAS  Google Scholar 

  18. G. Frommeyer, U. Brux, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46. . https://doi.org/10.2355/isijinternational.43.438.

    Article  CAS  Google Scholar 

  19. J. Li, R. Song, X. Li, N. Zhou, and R. Song: Mater. Sci. Eng. A, 2019, vol. 745, pp. 212–20. . https://doi.org/10.1016/j.msea.2018.12.110.

    Article  CAS  Google Scholar 

  20. M. Liu, C. Song, and Z. Cui: J. Mater. Sci. Technol., 2021, vol. 78, pp. 247–59. . https://doi.org/10.1016/j.jmst.2020.11.034.

    Article  Google Scholar 

  21. T.P. Zhou, C.Y. Wang, C. Wang, W.Q. Cao, and Z.J. Chen: Mater. Sci. Eng. A, 2020, vol. 798, 140147. https://doi.org/10.1016/j.msea.2020.140147.

    Article  CAS  Google Scholar 

  22. A.K. Srivastava, D. Bhattacharjee, G. Jha, N. Gope, and S.B. Singh: Mater. Sci. Eng. A, 2007, vol. 445, pp. 549–57. . https://doi.org/10.1016/j.msea.2006.09.101.

    Article  CAS  Google Scholar 

  23. S.S. Sohn, K. Choi, J.-H. Kwak, N.J. Kim, and S. Lee: Acta Mater., 2014, vol. 78, pp. 181–89. . https://doi.org/10.1016/j.actamat.2014.06.059.

    Article  CAS  Google Scholar 

  24. H. Pal, A. Chanda, and M. De: J. Alloys Compd., 1998, vol. 278, pp. 209–15. . https://doi.org/10.1016/S0925-8388(98)00583-0.

    Article  CAS  Google Scholar 

  25. P. Chen, X.C. Xiong, G.D. Wang, and H.L. Yi: Scripta Mater., 2016, vol. 124, pp. 42–46. . https://doi.org/10.1016/j.scriptamat.2016.06.031.

    Article  CAS  Google Scholar 

  26. B. Luan, H. Xie, Z. Liao, F. Li, and M. Mao: Rare Metal Mater. Eng., 2019, vol. 48, pp. 2495–501. . https://doi.org/10.1007/s11837-014-1126-5.

    Article  CAS  Google Scholar 

  27. K.-P. Gradwohl, W. Miller, N. Dropka, and R.R. Sumathi: Comput. Mater. Sci., 2022, vol. 211, 111537. https://doi.org/10.1016/j.commatsci.2022.111537.

    Article  CAS  Google Scholar 

  28. T. Huang, F. Liu, Z. Liu, G. He, and Y. Hu: Philos. Mag. Lett., 2022, vol. 102, pp. 209–19. . https://doi.org/10.1080/09500839.2022.2065701.

    Article  CAS  Google Scholar 

  29. M. Sudmanns, M. Stricker, D. Weygand, T. Hochrainer, and K. Schulz: J. Mech. Phys. Solids, 2019, vol. 132, 103695. https://doi.org/10.1016/j.jmps.2019.103695.

    Article  Google Scholar 

  30. E.M. Lehockey, G. Palumbo, and P. Lin: Scripta Mater., 1998, vol. 39, pp. 353–58. . https://doi.org/10.1016/S1359-6462(98)00172-9.

    Article  CAS  Google Scholar 

  31. L. Zhao, N. Park, Y. Tian, A. Shibata, and N. Tsuji: Adv. Eng. Mater., 2017, vol. 19, p. 1600778. . https://doi.org/10.1002/adem.201600778.

    Article  CAS  Google Scholar 

  32. X.Y. Fang, W.H. Yin, C.X. Qin, W.G. Wang, K.H. Lo, and C.H. Shek: Mater Charact, 2016, vol. 118, pp. 397–404. . https://doi.org/10.1016/j.matchar.2016.06.017.

    Article  CAS  Google Scholar 

  33. Q. Lu, J. Wu, S. Liu, S. Zhang, X. Cai, W. Li, J. Jiang, and X. Jin: Ultramicroscopy, 2022, vol. 237, 113519. https://doi.org/10.1016/j.ultramic.2022.113519.

    Article  CAS  PubMed  Google Scholar 

  34. Y.J. Zhang, D. Han, and X.W. Li: Mater. Sci. Eng. A, 2021, vol. 814, 141193. https://doi.org/10.1016/j.msea.2021.141193.

    Article  CAS  Google Scholar 

  35. Y.J. Zhang, D. Han, and X.W. Li: Scripta Mater., 2020, vol. 178, pp. 269–73. . https://doi.org/10.1016/j.scriptamat.2019.11.049.

    Article  CAS  Google Scholar 

  36. Y.J. Zhang, D. Han, and X.W. Li: Int. J. Fatigue, 2021, vol. 149, 106266. https://doi.org/10.1016/j.ijfatigue.2021.106266.

    Article  CAS  Google Scholar 

  37. U.F. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, pp. 171–273. . https://doi.org/10.1016/S0079-6425(02)00003-8.

    Article  CAS  Google Scholar 

  38. W.H. Jiang, F.X. Liu, H.H. Liao, H. Choo, and P.K. Liaw: J. Mater. Res., 2007, vol. 22, pp. 368–73. . https://doi.org/10.1557/JMR.2007.0041.

    Article  Google Scholar 

  39. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Acta Mater., 2005, vol. 53, pp. 5439–47. . https://doi.org/10.1016/j.actamat.2005.08.017.

    Article  CAS  Google Scholar 

  40. Y.K. Lee and C.S. Choi: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 355–60. . https://doi.org/10.1007/s11661-000-0271-3.

    Article  CAS  Google Scholar 

  41. G. Liu, B. Li, S. Xu, S. Tong, X. Wang, and X.K. Liang: Mater Charact, 2021, vol. 173, 110920. https://doi.org/10.1016/j.matchar.2021.110920.

    Article  CAS  Google Scholar 

  42. M.R. Berrahmoune, S. Berveiller, K. Inal, A. Moulin, and E. Patoor: Mater. Sci. Eng. A, 2004, vol. 378, pp. 304–07. . https://doi.org/10.1016/j.msea.2003.10.372.

    Article  CAS  Google Scholar 

  43. S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama: Mater. Trans., 2004, vol. 45, pp. 2245–51. . https://doi.org/10.2320/matertrans.45.2245.

    Article  CAS  Google Scholar 

  44. Y. Zhang, X. Chai, X. Ju, Y. You, S. Zhang, L. Zheng, Z. Moumni, J. Zhu, and W. Zhang: Int. J. Plast., 2023, vol. 160, 103481. https://doi.org/10.1016/j.ijplas.2022.103481.

    Article  CAS  Google Scholar 

  45. S. Kaar, K. Steineder, R. Schneider, D. Krizan, and C. Sommitsch: Scripta Mater., 2021, vol. 200, 113923. https://doi.org/10.1016/j.scriptamat.2021.113923.

    Article  CAS  Google Scholar 

  46. E. Jimenez-Melero, NH. van Dijk, L. Zhao, J. Sietsma, SE. Offerman and JP. Wright: Scripta Mater., 2007, vol. 56, pp. 421–24. . https://doi.org/10.1016/j.scriptamat.2006.10.041

  47. N. Tsuchida, T. Kawahata, E. Ishimaru, and A. Takahashi: ISIJ Int., 2014, vol. 54, pp. 1971–97. . https://doi.org/10.2355/isijinternational.54.1971.

    Article  CAS  Google Scholar 

  48. C. Herrera, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 4653–64. . https://doi.org/10.1016/j.actamat.2011.04.011.

    Article  CAS  Google Scholar 

  49. E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Mater. Sci. Eng. A, 1999, vol. 30, pp. 1223–33. . https://doi.org/10.1007/s11661-999-0272-9.

    Article  Google Scholar 

  50. Z. Zhuo, S. Xia, Q. Bai, and B. Zhou: J. Mater. Sci., 2018, vol. 53, pp. 2844–58. . https://doi.org/10.1007/s10853-017-1695-0.

    Article  CAS  Google Scholar 

  51. P. Aniello and C. Lupo: Open. Syst. Inf. Dyn., 2009, vol. 16, pp. 127–43. . https://doi.org/10.1142/S1230161209000104.

    Article  Google Scholar 

  52. R. Chen, P. Chen, and X.W. Li: Mater. Sci. Eng. A, 2023, vol. 862, 144475. https://doi.org/10.1016/j.msea.2022.144475.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant Nos. 52171108 and 51804072) and was also supported by the Fundamental Research Funds for the Central University (Grant Nos. N2202007 and N2202011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Chen or X. W. Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, P., Chen, R. et al. A Feasible Thermomechanical Process of a Duplex-Phase Fe–Mn–Al–C Steel for Significantly Increasing Ductility Without Loss of Strength. Metall Mater Trans A 55, 1539–1549 (2024). https://doi.org/10.1007/s11661-024-07342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07342-7

Navigation