Skip to main content
Log in

Phenomenological Modeling of Deformation-Induced Martensite Transformation Kinetics in Austenitic Stainless Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The aim of this study is to predict the kinetics of deformation-induced martensite transformation (DIMT) by proposing a novel model considering the effects of three loading characteristics: temperature, strain rate, and stress state. Experiments including hot compression, tension, notched tension, and shear tests using 304 stainless steel plate were carried out to investigate the transformation kinetics. After a decoupling analysis was conducted on the effects of the three characteristics, particularly the temperature and strain rate effects under high strain rate loading conditions, three kinetic sub-models were established individually for each effect, and the proposed model was developed by multiplying the three kinetic sub-models. A stepwise fitting method was proposed for the calibration of material constants to replace complex iterative optimization algorithms and improve the certainty of the values of the material constants. The proposed model was further validated using the experimental data of various austenitic stainless steels obtained from previous studies. Result shows the model revealed satisfactory accuracy in predicting the DIMT behavior in material experiment. After compiling the model into a USDFLD subroutine, simulation of a heat-assisted fine-blanking process was conducted in ABAQUS, giving a reasonable prediction of martensite content of the blanking parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. W.S. Park, S.W. Yoo, M.H. Kim, and J.M. Lee: Mater. Des., 2010, vol. 31, pp. 3630–40.

    Article  CAS  Google Scholar 

  2. B. Jia, A. Rusinek, R. Pesci, S. Bahi, and R. Bernier: Int. J. Mech. Sci., 2020, vol. 170, p. 105356.

    Article  Google Scholar 

  3. X. Chen, L. Ma, C. Zhou, Y. Hong, H. Tao, J. Zheng, and L. Zhang: Corros. Sci., 2019, vol. 148, pp. 159–70.

    Article  CAS  Google Scholar 

  4. N. Ethiraj and V. Senthil Kumar: Adv. Mater. Res., 2011, vol. 418–420, pp. 1410–17.

    Article  Google Scholar 

  5. Q. Zheng, X. Zhuang, J. Hu, and Z. Zhao: Mater. Charact., 2020, vol. 166, p. 110452.

    Article  CAS  Google Scholar 

  6. M.J. Sohrabi, M. Naghizadeh, and H. Mirzadeh: Arch. Civ. Mech. Eng., 2020, vol. 20, pp. 1–24.

    Article  Google Scholar 

  7. M. Naghizadeh and H. Mirzadeh: Vacuum, 2018, vol. 157, pp. 243–48.

    Article  CAS  Google Scholar 

  8. G. Sun, L. Du, J. Hu, B. Zhang, and R.D.K. Misra: Mater. Sci. Eng. A, 2019, vol. 746, pp. 341–55.

    Article  CAS  Google Scholar 

  9. J.V. Tilak Kumar, J. Sudha, K.A. Padmanabhan, A.V. Frolova, and V.V. Stolyarov: Mater. Sci. Eng. A, 2020, vol. 777, p. 139046.

    Article  CAS  Google Scholar 

  10. S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Metall. Trans. A, 1982, vol. 13, pp. 619–26.

    Article  CAS  Google Scholar 

  11. L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13, pp. 627–35.

    Article  CAS  Google Scholar 

  12. A. Das and S. Tarafder: Int. J. Plast., 2009, vol. 25, pp. 2222–47.

    Article  CAS  Google Scholar 

  13. P. Hedström, L.E. Lindgren, J. Almer, U. Lienert, J. Bernier, M. Terner, and M. Odén: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1039–48.

    Article  Google Scholar 

  14. G.N. Haidemenopoulos, N. Aravas, and I. Bellas: Mater. Sci. Eng. A, 2014, vol. 615, pp. 416–23.

    Article  CAS  Google Scholar 

  15. G.W. Powell: Trans. Am. Soc. Met., 1958, vol. 50, pp. 478–97.

    Google Scholar 

  16. A.A. Lebedev and V.V. Kosarchuk: Int. J. Plast., 2000, vol. 16, pp. 749–67.

    Article  CAS  Google Scholar 

  17. H. Mirzadeh and A. Najafizadeh: J. Alloys Compd., 2009, vol. 476, pp. 352–55.

    Article  CAS  Google Scholar 

  18. H. Mirzadeh and A. Najafizadeh: Mater. Charact, 2008, vol. 59, pp. 1650–54.

    Article  CAS  Google Scholar 

  19. A. Das, S. Tarafder, and P.C. Chakraborti: Mater. Sci. Eng. A, 2011, vol. 529, pp. 9–20.

    Article  CAS  Google Scholar 

  20. W. Mu, M. Rahaman, F.L. Rios, J. Odqvist, and P. Hedström: Mater. Des., 2021, vol. 197, p. 109199.

    Article  CAS  Google Scholar 

  21. M.C. Mataya and V.E. Sackschewsky: Metall. Mater. Trans. A, 1994, vol. 25, pp. 2737–52.

    Article  Google Scholar 

  22. S.S.M. Tavares, J.M. Pardal, M.J.G. da Silva, H.F.G. Abreu, and M.R. da Silva: Mater. Charact., 2009, vol. 60, pp. 907–11.

    Article  CAS  Google Scholar 

  23. H.C. Shin, T.K. Ha, and Y.W. Chang: Scr. Mater., 2001, vol. 45, pp. 823–29.

    Article  CAS  Google Scholar 

  24. P.M. Ahmedabadi, V. Kain, and A. Agrawal: Mater. Des., 2016, vol. 109, pp. 466–75.

    Article  CAS  Google Scholar 

  25. T. Angel: J. Iron Steel Inst., 1954, vol. 177, pp. 165–74.

    CAS  Google Scholar 

  26. R.G. Stringfellow, D.M. Parks, and G.B. Olson: Acta Metall. Mater., 1992, vol. 40, pp. 1703–16.

    Article  CAS  Google Scholar 

  27. Y. Tomita and T. Iwamoto: Int. J. Mech. Sci., 1995, vol. 37, pp. 1295–1305.

    Article  Google Scholar 

  28. W.J. Dan, W.G. Zhang, S.H. Li, and Z.Q. Lin: Comput. Mater. Sci., 2007, vol. 40, pp. 101–07.

    Article  CAS  Google Scholar 

  29. S.H. Li, W.J. Dan, W.G. Zhang, and Z.Q. Lin: Comput. Mater. Sci., 2007, vol. 40, pp. 292–99.

    Article  CAS  Google Scholar 

  30. Q. Zheng, X. Zhuang, and Z. Zhao: Metall. Mater. Trans. A, 2021, vol. 52, pp. 5200–14.

    Article  CAS  Google Scholar 

  31. G.B. Olson and M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–95.

    Article  CAS  Google Scholar 

  32. A.M. Beese and D. Mohr: Acta Mater., 2011, vol. 59, pp. 2589–2600.

    Article  CAS  Google Scholar 

  33. V.V. Kosarchuk, L.V. Zaitseva, A.A. Lebedev, and B.I. Koval’chuk: Strength Mater., 1989, vol. 21, pp. 60–64.

    Article  Google Scholar 

  34. J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

    Article  CAS  Google Scholar 

  35. N. Tsuchida, Y. Yamaguchi, Y. Morimoto, T. Tonan, Y. Takagi, and R. Ueji: ISIJ Int., 2013, vol. 53, pp. 1881–87.

    Article  CAS  Google Scholar 

  36. Z. Zhu, W.T. Fu, R.B. Li, Q.W. Chen, Z.A. Zhou, Z.H. Wang, J.Q. Liu, and S.H. Sun: J. Iron Steel Res. Int., 2021, vol. 28, pp. 1030–36.

    Article  CAS  Google Scholar 

  37. B. He: Materials (Basel), 2020, vol. 13, pp. 1–31.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Shanghai Outstanding Academic Leaders Plan (21XD1422000).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xincun Zhuang or Zhen Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zheng, Q., Gu, N. et al. Phenomenological Modeling of Deformation-Induced Martensite Transformation Kinetics in Austenitic Stainless Steels. Metall Mater Trans A 55, 73–92 (2024). https://doi.org/10.1007/s11661-023-07228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07228-0

Navigation