Skip to main content
Log in

Modeling Continuous Cooling Transformations for HSLA Steels With Physical Metallurgy Guided Hereditary Machine Learning

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Phase transformations during continuous cooling play a vital role in controlling final microstructure and mechanical properties of hot-rolled high-strength low-alloy (HSLA) steels. Therefore, accurate prediction of continuous cooling transformation (CCT) diagrams is the key to optimizing hot-rolling processes. But, because phase transformation behaviors are complex and the accumulated data are insufficient, it is of great difficulty to accurately model CCT diagrams. In this paper, a hereditary modeling method based on the combination theories of physical metallurgy (TPM) and machine learning (ML) is proposed. Through thermodynamic and kinetic analyses, the key factors affecting behaviors of continuous cooling transformation are clarified. Combined with the existed data, the feature parameters in direct correlations with phase transformation temperatures are obtained by theoretical calculations. By using the algorithm of support vector machine (SVM), the model for predicting CCT diagrams has been developed, demonstrating superior prediction accuracy over the traditional data-driven ML models, especially in predicting the temperatures for pearlite and bainite transformations. By applying the established ML models to industrial production of HSLA steel plates, their CCT diagrams were predicted and verified through metallographic observations of final microstructures formed under different cooling paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Chakraborty, P.P. Chattopadhyay, S.K. Ghosh, and S. Datta: Appl. Soft Comput., 2017, vol. 58, pp. 297–306.

    Article  Google Scholar 

  2. X.J. Chen, N.M. Xiao, M.H. Cai, D.Z. Li, G.Y. Li, G.Y. Sun, and B.F. Rolfe: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 4732–40.

    Article  Google Scholar 

  3. V. Colla, M. Desanctis, A. Dimatteo, G. Lovicu, and R. Valentini: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2781–93.

    Article  Google Scholar 

  4. S.K. Ghosh, P.P. Chattopadhyay, A. Halder, S. Ganguly, and S. Datta: ISIJ Int., 2008, vol. 48, pp. 649–57.

    Article  CAS  Google Scholar 

  5. R.L. Bodnar, T. Ohhashi, and R.I. Jaffee: Metall. Trans. A, 1989, vol. 20, pp. 1445–60.

    Article  Google Scholar 

  6. S. Kang, S. Yoon, and S.J. Lee: ISIJ Int., 2014, vol. 54, pp. 997–99.

    Article  CAS  Google Scholar 

  7. C. Hüter, X. Yin, T. Vo, and S. Braun: Comput. Mater. Sci., 2020, vol. 176, p. 109488.

    Article  Google Scholar 

  8. J.S. Kirkaldy and E.A. Baganis: Metall. Trans. A, 1978, vol. 9, pp. 495–501.

    Article  Google Scholar 

  9. N. Saunders, Z. Guo, X. Li, A.P. Miodownik, and J.P. Schillé: JMatPro Software Literature, 2004, pp. 1–12.

  10. S. Chakraborty, P. Das, N.K. Kaveti, P.P. Chattopadhyay, and S. Datta: Multidiscip. Model. Mater. Struct., 2019, vol. 15, pp. 170–86.

    Article  CAS  Google Scholar 

  11. Y.T. Zhu and T.C. Lowe: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 675–82.

    Article  CAS  Google Scholar 

  12. J. Collins, M. Piemonte, M. Taylor, J. Fellowes, and E. Pickering: Metals-Basel, 2023, vol. 13, p. 1168.

    Article  CAS  Google Scholar 

  13. W. Jiang, D. Wu, W. Dong, J. Ding, Z. Ye, P. Zeng, and Y. Gao: J. Mech. Robot., 2024, vol. 16, p. 051009.

    Article  Google Scholar 

  14. X. Li, X.G. Zhou, G.M. Cao, S.H. Xu, Y. Wang, and Z.Y. Liu: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 3171–81.

    Article  Google Scholar 

  15. C.Y. Cui, G.M. Cao, Q.M. Jiang, K.F. Xue, and Z.Y. Liu: Metall. Mater. Trans. A, 2021, vol. 53A, pp. 3654–68.

    Google Scholar 

  16. J. Wang, P.J. Van Der Wolk, and S. Van Der Zwaag: ISIJ Int., 1999, vol. 39, pp. 1038–46.

    Article  CAS  Google Scholar 

  17. X.X. Geng, H. Wang, W.H. Xue, S. Xiang, H.L. Huang, L. Meng, and G. Ma: Comput. Mater. Sci., 2020, vol. 171, p. 109235.

    Article  CAS  Google Scholar 

  18. L. Qiao, J. Zhu, and Y. Wang: Steel Res. Int., 2021, vol. 93, p. 2100267.

    Article  Google Scholar 

  19. J. Trzaska: Arch. Metall. Mater., 2018, vol. 63, pp. 2009–15.

    CAS  Google Scholar 

  20. H.K.D.H. Bhadeshia: Mater. Sci., 1981, vol. 15, pp. 175–77.

    CAS  Google Scholar 

  21. C. Capdevila, F.G. Caballero, and C. García de Andrés: Mater. Sci. Technol. Lond., 2003, vol. 19, pp. 581–86.

    Article  CAS  Google Scholar 

  22. M. Rahaman, W. Mu, J. Odqvist, and P. Hedström: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2081–91.

    Article  Google Scholar 

  23. X.C. Li, D.X. Xia, X.L. Wang, X.M. Wang, and C.J. Shang: Sci. China Technol. Sci., 2013, vol. 56, pp. 66–70.

    Article  CAS  Google Scholar 

  24. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du: Mater. Sci. Technol. Lond., 2012, vol. 27, pp. 1657–63.

    Article  Google Scholar 

  25. M. Umemoto, K. Horiuchi, and I. Tamura: Tetsu-to-Hagane, 1982, vol. 68, pp. 461–70.

    Article  CAS  Google Scholar 

  26. S.J. Lee, J.S. Park, and Y.K. Lee: Scripta Mater., 2008, vol. 59, pp. 87–90.

    Article  CAS  Google Scholar 

  27. S.C. Hong and K.S. Lee: Mater. Sci. Eng. A, 2002, vol. 323, pp. 148–59.

    Article  Google Scholar 

  28. X. Chen, B. Rolfe, A. Abdollahpoor, N. Xiao, and D. Li: Mater. Sci. Technol. Lond., 2019, vol. 35, pp. 429–36.

    Article  CAS  Google Scholar 

  29. A. Matsuzaki and H. Bhadeshia: Mater. Sci. Technol. Lond., 1999, vol. 15, pp. 518–22.

    Article  CAS  Google Scholar 

  30. Y.J. Lan, D.Z. Li, and Y.Y. Li: Acta Mater., 2004, vol. 52, pp. 1721–29.

    Article  CAS  Google Scholar 

  31. C. Zhang, D. Cai, Y. Wang, M. Liu, B. Liao, and Y. Fan: Mater. Charact., 2008, vol. 59, pp. 1638–42.

    Article  CAS  Google Scholar 

  32. H.H. Kuo, M. Umemoto, K. Sugita, G. Miyamoto, and T. Furuhara: ISIJ Int., 2012, vol. 52, pp. 669–78.

    Article  CAS  Google Scholar 

  33. C.M. Sellars and J.A. Whiteman: Mater. Sci., 1978, vol. 13, pp. 187–94.

    Google Scholar 

  34. R. Rong, Y.C. Wu, W.M. Tang, and T. Feng: Trans. Nonferr. Met. Soc., 2008, vol. 18, pp. 66–71.

    Article  Google Scholar 

  35. Q.Y. Sha and Z.Q. Sun: Mater. Sci. Technol. Lond., 2011, vol. 27, pp. 1408–11.

    Article  CAS  Google Scholar 

  36. D. Dong, F. Chen, and Z. Cui: J. Mater. Eng. Perform., 2016, vol. 25, pp. 152–64.

    Article  CAS  Google Scholar 

  37. R. Bengochea, B. Lopez, and I. Gutierrez: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 417–26.

    Article  CAS  Google Scholar 

  38. N.M. Xiao, Z.F. Yue, Y.J. Lan, M.M. Tong, and D.Z. Li: Acta Metall. Sin., 2005, vol. 5, pp. 496–502.

    Google Scholar 

  39. N. Xiao, M. Tong, Y. Lan, D. Li, and Y. Li: Acta Mater., 2006, vol. 54, pp. 1265–78.

    Article  CAS  Google Scholar 

  40. S.L. Zhang: Adv. Mater. Res., 2011, vol. 284, pp. 2358–65.

    Article  Google Scholar 

  41. N. Hatta, J. Kokado, S. Kikuchi, and H. Takuda: Steel Res. Int., 1985, vol. 56, pp. 575–82.

    Article  Google Scholar 

  42. L.Y. Lan, C.L. Qiu, D.W. Zhao, and H. Xiu: J. Iron. Steel Res. Int., 2011, vol. 18, pp. 55–60.

    Article  CAS  Google Scholar 

  43. S.F. Medina and C.A. Hernandez: Acta Mater., 1996, vol. 44, pp. 137–48.

    Article  CAS  Google Scholar 

  44. A.I. Fernández, P. Uranga, B. Lopez, and J.M. Rodriguez-Ibabe: Mater. Sci. Eng. A, 2003, vol. 361, pp. 367–76.

    Article  Google Scholar 

  45. C. Roucoules, S. Yue, and J.J. Jonas: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 181–90.

    Article  CAS  Google Scholar 

  46. S.F. Medina and J.E. Mancilla: ISIJ Int., 1996, vol. 36, pp. 1063–69.

    Article  CAS  Google Scholar 

  47. S.F. Medina and J.E. Mancilla: ISIJ Int., 1993, vol. 33, pp. 1257–64.

    Article  CAS  Google Scholar 

  48. F. Siciliano Jr., K. Minami, T.M. Maccagno, and J.J. Jonas: ISIJ Int., 1996, vol. 36, pp. 1500–06.

    Article  CAS  Google Scholar 

  49. C. Cui, H. Wang, X. Gao, G. Cao, and Z. Liu: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 4112–24.

    Article  Google Scholar 

  50. Y.K. Lee: J. Mater. Sci., 2002, vol. 21, pp. 1253–55.

    CAS  Google Scholar 

  51. D. Li, W. Yang, and S. Wang: Comput. Electron. Agric., 2010, vol. 74, pp. 274–79.

    Article  Google Scholar 

  52. A.J. Smola and B. Scholkopf: Stat. Comput., 2004, vol. 14, pp. 199–222.

    Article  Google Scholar 

  53. B. Efron: J. Am. Stat. Assoc., 1983, vol. 78, pp. 316–30.

    Article  Google Scholar 

  54. M. Zhang, L. Li, R.Y. Fu, D. Krizan, and B.C. DeCooman: Mater. Sci. Eng. A, 2006, vol. 438–440, pp. 296–99.

    Article  Google Scholar 

  55. X.Q. Yuan, Z.Y. Liu, S.H. Jiao, L.Q. Ma, and G.D. Wang: ISIJ Int., 2006, vol. 46, pp. 579–85.

    Article  CAS  Google Scholar 

  56. J. Chen, F. Li, Z.Y. Liu, S. Tang, and G.D. Wang: ISIJ Int., 2013, vol. 53, pp. 1070–75.

    Article  CAS  Google Scholar 

  57. Z.F. Wang, S. Tang, Z.Y. Liu, and G.D. Wang: J. Northeast. Univ. (Nat. Sci.), 2014, vol. 35, pp. 1117–19.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors should like to acknowledge the financial support from the Ministry of Science and Technology, China (Grant No. 2022YFB3304800), the Postdoctoral Science Foundation of China (Grant No. 2022T150205), the National Natural Science Foundation of China (Grant No. 52104370), and the Postdoctoral Research Fund for Northeastern University (Grant No. 20210203).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangming Cao or Zhenyu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Cao, G., Cui, C. et al. Modeling Continuous Cooling Transformations for HSLA Steels With Physical Metallurgy Guided Hereditary Machine Learning. Metall Mater Trans A 54, 4891–4904 (2023). https://doi.org/10.1007/s11661-023-07210-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07210-w

Navigation