Skip to main content
Log in

Prediction and Feature Analysis of Entrapped Slag Defect on Casting Slab Based on Optimized XGBoost Model

  • Topical Collection: 2023 Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Machine learning (ML) algorithms have been proven to be effective methods in steel design and production processes. In this study, the feature analysis and prediction of slag entrapment in continuous casting process were carried out based on XGBoost model. Results show that the area under the curve (AUC) and accuracy of BO-XGBoost are 0.811 and 0.756, respectively, which are higher than PSO-XGBoost and GA-XGBoost. Feature analysis shows that mold flux, oscillation frequency, serial number, inner arc, casting speed (CS) and slab width are the key features which affect the entrapped slag defect, based on Gini coefficient and SHAP values. In addition, partial dependence plots of SHAP value suggest that it is conducive to product the qualified slabs with less entrapped slag defect, when the oscillation frequency is 60–140 cpm, inner arc is 7.5–9.5 m, CS is 0.35–1.2 m/min, serial number is less than 5, slab width is less than 1300 mm and 2# mold flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.K. Dhua: J. Fail. Anal. Prev., 2019, vol. 19, pp. 1023–33.

    Article  Google Scholar 

  2. Y. Chung and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 957–71.

    Article  CAS  Google Scholar 

  3. P. Rocabois, J. Lehmann, C. Gatellier, and J.P. Teres: Ironmak. Steelmak., 2003, vol. 30, pp. 95–100.

    Article  CAS  Google Scholar 

  4. M. Iguchi, Y. Sumida, R. Okada, and Z. Morita: ISIJ Int., 1994, vol. 34, pp. 164–70.

    Article  CAS  Google Scholar 

  5. S.M. Cho, B.G. Thomas, and S.H. Kim: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 52–76.

    Article  Google Scholar 

  6. I. Okamura, K. Baba, T. Takahashi, and H. Shiomi: IECON Proc., 1991, vol. 1, pp. 37–41.

    Google Scholar 

  7. K. Son, J. Lee, H. Hwang, W. Jeon, H. Yang, I. Sohn, Y. Kim, and H. Um: J. Mater. Res. Technol., 2021, vol. 12, pp. 555–68.

    Article  CAS  Google Scholar 

  8. J. Xiong, T.Y. Zhang, and S.Q. Shi: Sci. China: Technol. Sci., 2020, vol. 63, pp. 1247–55.

    Article  CAS  Google Scholar 

  9. T. Chen and C. Guestrin: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2016, vol. 13–17, pp. 785–94.

  10. Y. Qiu, J. Zhou, M. Khandelwal, H. Yang, P. Yang, and C. Li: Eng. Comput., 2022, vol. 38, pp. 4145–62.

    Article  Google Scholar 

  11. K. Budholiya, S.K. Shrivastava, and V. Sharma: J. King Saud Univ. Comput. Inf. Sci., 2022, vol. 34, pp. 4514–23.

    Google Scholar 

  12. J.H. Friedman: Ann. Stat., 2001, vol. 29, pp. 1189–1232.

    Article  Google Scholar 

  13. K. Song, F. Yan, T. Ding, L. Gao, and S. Lu: Comput. Mater. Sci., 2020, vol. 174, 109472.

    Article  CAS  Google Scholar 

  14. B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, and N. de Freitas: Proc. IEEE, 2016, vol. 104, pp. 148–75.

    Article  Google Scholar 

  15. L. Yang and A. Shami: Neurocomputing, 2020, vol. 415, pp. 295–316.

    Article  Google Scholar 

  16. R. Shi, X. Xu, J. Li, and Y. Li: Appl. Soft Comput., 2021, vol. 109, 107538.

    Article  Google Scholar 

  17. T.M. Shami, A.A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M.A. Summakieh, and S. Mirjalili: IEEE Access, 2022, vol. 10, pp. 10031–61.

    Article  Google Scholar 

  18. M. Jain, V. Saihjpal, N. Singh, and S.B. Singh: Appl. Sci., 2022, vol. 12, p. 8392.

    Article  CAS  Google Scholar 

  19. F. Marini and B. Walczak: Chemom. Intell. Lab. Syst., 2015, vol. 149, pp. 153–65.

    Article  CAS  Google Scholar 

  20. S. Katoch, S.S. Chauhan, and V. Kumar: Multimed. Tools Appl., 2021, vol. 80, pp. 8091–8126.

    Article  PubMed  Google Scholar 

  21. D. Whitley: Stat. Comput., 1994, vol. 4, pp. 65–85.

    Article  Google Scholar 

  22. J. Huang and C.X. Ling: IEEE Trans. Knowl. Data Eng., 2005, vol. 17, pp. 299–310.

    Article  CAS  Google Scholar 

  23. W. Dong, Y. Huang, B. Lehane, and G. Ma: Autom. Constr., 2020, vol. 114, 103155.

    Article  Google Scholar 

  24. Z. Xu, D. Shen, T. Nie, Y. Kou, N. Yin, and X. Han: Inf. Sci., 2021, vol. 572, pp. 574–89.

    Article  Google Scholar 

  25. J.A. Sáez, J. Luengo, J. Stefanowski, and F. Herrera: Inf. Sci., 2015, vol. 291, pp. 184–203.

    Article  Google Scholar 

  26. H. Cao, X. Xie, J. Shi, and Y. Wang: J. Hydrol., 2022, vol. 610, 127933.

    Article  Google Scholar 

  27. B. Lu, W. Wang, J. Li, H. Zhao, and D. Huang: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 365–77.

    Article  Google Scholar 

  28. K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmak. Steelmak., 2005, vol. 32, pp. 26–34.

    Article  CAS  Google Scholar 

  29. A.B. Parsa, A. Movahedi, H. Taghipour, S. Derrible, and A. Mohammadian: Accid. Anal. Prev., 2020, vol. 136, 105405.

    Article  PubMed  Google Scholar 

  30. Y. Meng, N. Yang, Z. Qian, and G. Zhang: J. Theoret. Appl. Electron. Commer. Res., 2021, vol. 16, pp. 466–90.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hunan Province [Grant numbers 2022JJ10081], National Natural Science Foundation of China [Grant number 52174327, 52374348, U1760202], and the Fundamental Research Funds for the Central Universities of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lejun Zhou.

Ethics declarations

Conflict of interest

The authors declare there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Wang, W., Zhou, L. et al. Prediction and Feature Analysis of Entrapped Slag Defect on Casting Slab Based on Optimized XGBoost Model. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03092-4

Navigation