Skip to main content
Log in

The Effects of Silicon and Niobium Concentration on the Solidification Behavior and Microstructure of Cast Monel Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Cast Monel alloys are used in applications requiring a combination of good mechanical properties and excellent resistance to corrosion. Despite prevalent industrial use, relatively few studies have been conducted to investigate the relationships between composition, solidification behavior, and microstructure. Given that these alloys are used in the cast and welded conditions, these factors have a significant influence over the material properties. In this work, microstructural characterization, electron probe microanalysis, X-ray diffraction, and differential scanning calorimetry were used to study how changes in Si and Nb concentrations affected the solidification path and microstructure of Monel alloys. It was found that increasing Nb concentration stabilized higher amounts of MC carbides and suppressed graphite formation during solidification. It was also found that the high nominal concentration and segregation of Si to the liquid led to the formation of Ni31Si12 and other silicides via terminal eutectic reactions at the end of solidification. A pseudo-binary solidification diagram was constructed using experimental data and was applied to predict the mass fraction of solidified eutectic as a function of composition. The modeled microstructures were found to be in good agreement with experimentally measured phase fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data will be made available upon request.

References

  1. L.E. Shoemaker and G.D. Smith: JOM, 2006, pp. 22–26.

  2. H. Vastenholt and T. Fukuda: Proc. Asia Pacific Oil Gas Conf., 1993, pp. 221–28.

  3. Specialmetals.com: Monel Alloy 400 Datasheet, 2005.

  4. ASTM A494, ASTM International, 2019.

  5. O.O. Marenych, D. Ding, Z. Pan, A.G. Kostryzhev, H. Li, and S. van Duin: Addit. Manuf., 2018, vol. 24, pp. 30–36.

    CAS  Google Scholar 

  6. R.K. Devendranath, N. Arivazhagan, S. Narayanan, M. Narayanan, A. Mondody, and R. Kashyap: Adv. Mater. Res., 2012, vol. 383–390, pp. 4693–96.

    Google Scholar 

  7. I.D. Choi, D.K. Matlock, D.L. Olson, and E. Procedures: Scripta Metall., 1988, vol. 22, pp. 1563–68.

    Article  CAS  Google Scholar 

  8. S. Wang, J. Jie, B. Dong, S. Liu, T. Wang, and T. Li: Mater. Sci. Technol., 2020, vol. 36, pp. 1671–84.

    Article  CAS  Google Scholar 

  9. A.G. Evgenov, G.I. Morozova, and V.I. Lukin: Met. Sci. Heat Treat., 2006, vol. 48, pp. 364–67.

    Article  CAS  Google Scholar 

  10. J.T. Eash and T.E. Kihlgren: Trans. Am. Foundrymen’s Soc., 1949, pp. 535–45.

  11. N.F. Lashko, K.P. Sorokina, and A.N. Gorbunov: Termicheskaya Obrab. Met., 1966, vol. 8, pp. 485–87.

    Google Scholar 

  12. T. Shinozawa, H. Murayarlia, and H. Mori: Trans. JIM.

  13. Z. Tianxiang, L. Yundong, Z. Zhi, and Z. Yaoxiao: MRS Proc., 1990, vol. 213, pp. 137–42.

    Article  Google Scholar 

  14. M. Sahoo, R.J. Lacroix, and P. Newcombe: AFS Trans., 2002, pp. 239–51.

  15. I. Raffeis, F. Adjei-Kyeremeh, U. Vroomen, E. Westhoff, S. Bremen, A. Hohoi, and A. Bührig-Polaczek: Appl. Sci., 2020, https://doi.org/10.3390/APP10103401.

    Article  Google Scholar 

  16. ASTM E1097-12, Conshohocken, PA, 2017, pp. 1-8.

  17. ASTM E1019-18, Conshohocken, PA, 2018, pp. 1-22.

  18. ASTM E407-07, Conshohocken, PA, 2015, pp. 1-22.

  19. EDAX Genesis Spectrum Software.

  20. M.D. Abràmoff, P.J. Magalhães, and S.J. Ram: Biophotonics Int., 2004, vol. 11, pp. 36–41.

    Google Scholar 

  21. J.J. Donovan, D. Kremser, J.H. Fournelle, and K. Goemann: Probe for EPMA Software: Acquisition, Automation, and Analysis, Probe Software Inc., 2012.

  22. M. Ganesan, D. Dye, and P.D. Lee: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2191–2204.

    Article  CAS  Google Scholar 

  23. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  24. TC-Python API Program. Guid. Accessed 2022.

  25. Thermo-Calc TCNi11 Ni-Base Superalloys Database. Accessed Feb 2022.

  26. Thermo-Calc TCBIN Bin. Solut. Database. Accessed Jan 2023.

  27. L. Gong, B. Chen, Z. Du, M. Zhang, R. Liu, and K. Liu: J. Mater. Sci. Technol., 2018, vol. 34, pp. 541–50.

    Article  CAS  Google Scholar 

  28. R.A. Wheeling and J.C. Lippold: Mater. Charact., 2016, vol. 115, pp. 97–103.

    Article  CAS  Google Scholar 

  29. W. Stockdale and J.N. DuPont: Sci. Technol. Weld. Join., 2011, vol. 16, pp. 426–32.

    Article  CAS  Google Scholar 

  30. J.N. DuPont, C.V. Robino, J.R. Michael, M.R. Nous, and A.R. Marder: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2785–96.

    Article  CAS  Google Scholar 

  31. A.K. Bhambri, T.Z. Kattamis, and J.E. Morral: Metall. Trans. B, 1975, vol. 6, pp. 523–37.

    Article  Google Scholar 

  32. K. Yamamoto, M. Hashimoto, N. Sasaguri, and Y. Matsubara: Mater. Trans., 2009, vol. 50, pp. 2253–58.

    Article  CAS  Google Scholar 

  33. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, 1974.

    Book  Google Scholar 

  34. Z.-H. Yu, L. Liu, X.B. Zhao, W.G. Zhang, J. Zhang, and H.Z. Fu: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 1835–40.

    Article  CAS  Google Scholar 

  35. P. Nash and A. Nash: Bull. Alloy Phase Diagrams, 1987, vol. 8, pp. 6–14.

    Article  CAS  Google Scholar 

  36. J. Zhang, Z. Lu, L. Jia, H. Xie, X. Wei, and S. Tao: Mater. Res. Express., 2021, https://doi.org/10.1088/2053-1591/ac4407.

    Article  Google Scholar 

  37. H. Xie, L. Jia, and Z. Lu: Mater. Charact., 2009, vol. 60, pp. 114–18.

    Article  CAS  Google Scholar 

  38. V. Biss and D.L. Sponseller: Metall. Trans., 1973, vol. 4, pp. 1953–60.

    Article  CAS  Google Scholar 

  39. J.N. DuPont, J.C. Lippold, and S.D. Kiser: Welding Metallurgy and Weldability of Nickel-Base Alloys, Wiley, Hoboken, 2009.

    Book  Google Scholar 

  40. F. Zupanic, C. Nunes, G. Coelho, P. Cury, G. Lojen, and T. Boncina: Trans. Nonferrous Met. Soc. China, 2018, vol. 28, pp. 2226–35.

    Article  CAS  Google Scholar 

  41. V.O. Dos Santos, H.M. Petrilli, C.G. Schön, and L.T.F. Eleno: Calphad, 2015, vol. 51, pp. 57–66.

    Article  Google Scholar 

  42. D.J.M. King, M. Yang, T.M. Whiting, X. Liu, and M.R. Wenman: Acta Mater., 2020, vol. 183, pp. 350–61.

    Article  CAS  Google Scholar 

  43. R.P. Smith: J. Am. Chem. Soc., 1948, vol. 70, pp. 2724–29.

    Article  CAS  Google Scholar 

  44. C.F. Walton and T.J. Opar, eds.: Iron Castings Handbook: Covering Data on Gray, Malleable, Ductile, White, Alloy, and Compacted Graphite Irons, Iron Castings Society, 1981.

  45. S.M. Seo, H.W. Jeong, Y.K. Ahn, D.W. Yun, J.H. Lee, and Y.S. Yoo: Mater. Charact., 2014, vol. 89, pp. 43–55.

    Article  CAS  Google Scholar 

  46. P.R.S. Azevedo e Silva, R. Baldan, C.A. Nunes, G.C. Coelho, and A.M.S. Costa: Mater. Charact., 2013, vol. 75, pp. 214–19.

    Article  CAS  Google Scholar 

  47. J.N. Dupont, C.V. Robino, A.R. Marder, and M.R. Notis: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2797–2806.

    Article  CAS  Google Scholar 

  48. K.L. Zeisler-Mashl and B.J. Pletka: Superalloys, 1992, vol. 1992, pp. 175–84.

    Google Scholar 

  49. E. Scheil: Zeitschrift für Met., 1942, vol. 34, pp. 70–72.

    Google Scholar 

  50. J.N. DuPont, J.R. Michael, and B.D. Newbury: Welding Metallurgy of Alloy HR-160 (No. SAND99-1355J), Albuquerque, NM and Livermore, CA, 1999.

  51. M.J. Cieslak, T.J. Headley, G.A. Knorovsky, A.D. Romig, and T. Kollie: Metall. Trans. A, 1990, vol. 21A, pp. 479–88.

    Article  CAS  Google Scholar 

  52. J.N. Dupont: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3612–20.

    Article  CAS  Google Scholar 

  53. M. Hamalainen, K. Jaaskelainen, R. Luoma, M. Nuotio, P. Taskinen, and O. Teppo: Calphad, 1990, vol. 14, pp. 125–37.

    Article  CAS  Google Scholar 

  54. H.A. Roth, C.L. Davis, and R.C. Thomson: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1329–35.

    Article  CAS  Google Scholar 

  55. Y. Mishima, S. Ochiai, N. Hamao, and M. Yodogawa: Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 656–64.

    Article  CAS  Google Scholar 

  56. J. Andersson, S. Raza, A. Eliasson, and K.B. Surreddi: 8th Int. Symp. Superalloy 718 Deriv. 2014, 2014, pp. 181–92.

  57. G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, and W.F. Hammetter: Metall. Trans. A, 1989, vol. 20A, pp. 2149–58.

    Article  CAS  Google Scholar 

  58. D.F. Susan, C.V. Robino, M.J. Minicozzi, and J.N. DuPont: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2817–25.

    Article  CAS  Google Scholar 

  59. Y. Shen, M. Wang, H. Xia, L. Zheng, N. Ta, Y. Meng, and F. Cui: Adv. Eng. Mater., 2021, vol. 23, pp. 1–8.

    Google Scholar 

  60. Y. Du and J.C. Schuster: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2409–18.

    Article  CAS  Google Scholar 

  61. X. Li, B. Zhang, T. Wang, Z. Liu, and T. Yu: J. Alloys Compd., 2016, vol. 672, pp. 578–81.

    Article  CAS  Google Scholar 

  62. Data retrieved from the Materials Project for Si12Ni31 from database version v2022.10.28., https://doi.org/10.17188/1201478.

  63. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson: APL Mater., 2013, https://doi.org/10.1063/1.4812323.

    Article  Google Scholar 

  64. T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965–71.

    Article  Google Scholar 

  65. H.D. Brody and M.C. Flemings: TMS-AIME, 1966, vol. 236, pp. 615–23.

    CAS  Google Scholar 

  66. S. Wang, D. Liu, Y. Du, L. Zhang, Q. Chen, and A. Engström: Int. J. Mater. Res., 2013, vol. 104, pp. 721–35.

    Article  CAS  Google Scholar 

  67. L. Bäckerud and L.M. Liljenvall: Met. Technol., 1979, vol. 6, pp. 463–76.

    Article  Google Scholar 

  68. MAGMA Gießereitechnologie GmbH, Aachen Ger.

Download references

Acknowledgments

The authors would like to thank Dr. Richard Hardin for his valuable contribution in performing the MAGMASOFT modeling work. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This research is sponsored by the DLA-Troop Support, Philadelphia, PA, and the Defense Logistics Agency Information Operations, J68, Research & Development, Ft. Belvoir, VA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Farnin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farnin, C.J., Coker, E.N., Salinas, P.A. et al. The Effects of Silicon and Niobium Concentration on the Solidification Behavior and Microstructure of Cast Monel Alloys. Metall Mater Trans A 54, 4716–4730 (2023). https://doi.org/10.1007/s11661-023-07193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07193-8

Navigation