Skip to main content
Log in

Effect of Welding Microstructure on Stress Relaxation Cracking Studied by Controlled Residual Stress Generation in a 316L(N) Austenitic Stainless Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of heterogeneous welding microstructure on the stress relaxation cracking (SRC) in the SRC-resistant 316L(N) steel was investigated. To trigger SRC, pre-straining by compression was applied after the welding and before subsequent stress relaxation by heat treatment. To this end, compact tension (CT) type specimens were extracted from thick plates welded on both sides. The notch was aligned with the welding centreline and notch root across the thickness, thereby crossing the heterogeneous microstructure. Residual stresses and strain fields induced by welding and pre-compression were estimated by 3D finite element simulations and values of the same order of magnitude were obtained for all regions of the weld. After thermal heat treatment at 575 °C for 580 and 1470 hours of the welded and further pre-strained CT samples, intergranular cavities and cracks similar to those found after the creep were observed. Cavities appeared exclusively on intergranular carbides and associated intermetallic precipitates. In the fusion zone (FZ), cavities preferentially nucleated on phases issued from the decomposition of the vermicular ferrite formed during welding. The highest number of cracks was systematically found in the coarse grain heat-affected zone (CGHAZ) of the weld. An increase in both pre-compression load and relaxation time led to an increase in damage after the heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. F. Dalle, M. Blat-Yrieix, S.D.-L. Goff, C. Cabet, and P. Dubuisson: Structural Materials for Generation IV Nuclear Reactors, Woodhead Publishing, Sawston, 2017, pp. 595–633.

    Book  Google Scholar 

  2. J.F. Lancaster: Handbook of Structural Welding: Processes, Materials and Methods Used in the Welding of Major Structures, Pipelines, and Process Plant, Elsevier, Amsterdam, 1997.

    Book  Google Scholar 

  3. R. Loots: Susceptibility of Service Exposed Creep Resistant Materials to Reheat Cracking During Repair Welding (Doctoral dissertation, University of Pretoria), 2006.

  4. H. Van Wortel.: Control of Relaxation Cracking in Austenitic High Temperature Components. In: NACE CORROSION, March 2007, pp. NACE-07423.

  5. L.E. Shoemaker, G.D. Smith, B.A. Baker, and J.M. Poole: Fabricating nickel alloys to avoid stress relaxation cracking. In: NACE CORROSION, March 2007, pp. NACE-07421.

  6. E. Barbareschi, P. Guarnone, A. Giostra, and M. Zappaterra: Mater. Sci. Technol., 2009, vol. 4, p. 89.

    Google Scholar 

  7. F. Dupoiron: Corrosion in Oil and Gas Industries High Temperature Working Group: Workshop on Relaxation Cracking of Stainless Steels, In: EUROCORR, 2010.

  8. M. Hussain, A. Hussain, and I. Hussain: J. Fail. Anal. Prev., 2018, vol. 18(4), pp. 733–58.

    Article  Google Scholar 

  9. Damage mechanisms affecting fixed equipment in the refining industry, American Petroleum Institute (API), 2019.

  10. R.M. Curran and A.W. Rankin: Trans. Am. Soc. Mech. Eng., 1957, vol. 79(6), pp. 1398–1409.

    Google Scholar 

  11. R.W. Emerson: Res. Suppl. Weld. J., 1957, vol. 1, pp. 89–104.

    Google Scholar 

  12. R.N. Younger and R.G. Baker: J. Iron Steel Inst., 1960, vol. 196, p. 18.

    Google Scholar 

  13. H. Pommier, E.P. Busso, T.F. Morgeneyer, and A. Pineau: Acta Mater., 2016, vol. 103, pp. 893–908.

    Article  CAS  Google Scholar 

  14. B. Weiss and R. Stickler: Metall. Mater. Trans. B, 1972, vol. 3, pp. 851–66.

    Article  CAS  Google Scholar 

  15. A.S. Grot and J.E. Spruiell: Metall. Trans. A, 1975, vol. 6, pp. 2023–30.

    Article  Google Scholar 

  16. M. Chabaud-Reytier: Étude de la fissuration différée par relaxation d'un acier inoxydable austénitique stabilisé au titane, Lille thèses, 1999.

  17. Q. Auzoux: Fissuration en relaxation des aciers inoxydables austénitiques-Influence de l'écrouissage sur l'endommagement intergranulaire. Doctoral dissertation, École Nationale Supérieure des Mines de Paris, 2004.

  18. R.N. Younger, R. Baker, and D. Haddrill: J. Iron Steel Inst, 1963, vol. 201(8), p. 693.

    Google Scholar 

  19. Y. Ito and M. Nakanishi: J. Jpn. Weld. Soc., 1971, vol. 40, pp. 1261–66.

    Article  CAS  Google Scholar 

  20. C.D. Lundin and S. Mohammed: Effect of welding conditions on transformation and properties of heat-affected zones in LWR (light-water reactor) vessel steels, United States, 1990.

  21. R. Unnikrishnan, S.M. Northover, H. Jazaeri, and P.J. Bouchard: Procedia Struct. Integr., 2016, vol. 2, pp. 3501–07.

    Article  Google Scholar 

  22. A. Dhooge, R.E. Dolby, J. Sebille, R. Steinmetz, and A.G. Vinckier: Int. J. Press. Vessels Pip., 1978, vol. 6(5), pp. 329–409.

    Article  CAS  Google Scholar 

  23. M. Turski, P.J. Bouchard, A. Steuwer, and P.J. Withers: Acta Mater., 2008, vol. 6, pp. 3598–3612.

    Article  Google Scholar 

  24. J. Lancaster: Steel congress. Steel Chem. Ind., 1968, vol. 9, p. 11.

    Google Scholar 

  25. N. Bailey: 6 - Reheat cracking, in Woodhead Publishing Series in Welding and Other Joining Technologies. N. Bailey and W. Publishing, eds., Woodhead Publishing, Sawston, 1994, pp. 170–79.

    Google Scholar 

  26. L.-G. Liljestrand, M. Aucouturier, G. Östberg, and P. Lindhagen: J. Nucl. Mater., 1978, vol. 75(1), pp. 52–67.

    Article  CAS  Google Scholar 

  27. S. Soundararajan: Stress Relaxation Cracking of TP 347H SS Flange Weld Joints on Reactor Charge Heater Manifold in Propane De-Hydrogenation Unit, In: EUROCORR, 2019.

  28. Y. Cètre: La corrosion dans l’industrie chimique: Enjeux-Impact, EDP Sciences, 2021.

  29. O. Hellstroem: Steel congress. Steel in the Chemical Industry, Luxembourg, 1968, vol. 9, p. 11.

    Google Scholar 

  30. D.A. Canonico: Significance of reheat cracks to the integrity of pressure vessels for light-water reactors, United States: N. p., 1977.

  31. R.D. Thomas: Weld. J., 1984, vol. 63(12), pp. 355s–68s.

    Google Scholar 

  32. L. Li and R.W. Messler: Weld. J., 2000, vol. 79, pp. 137s–44s.

    Google Scholar 

  33. I. Phung-on, An investigation of reheat cracking in the weld heat affected zone of type 347 SS, Doctoral dissertation, The Ohio State University, 2007.

  34. R. Kant, Stress relief cracking susceptibility in high temperature alloys, Doctoral dissertation, Lehigh University, 2018.

  35. H. Van Wortel, Relaxation cracking in the process industry, an underestimated problem, BALTICA 4-Plant Maintenance for Managing Life and Performance, 1998, vol. 2 , pp. 637–47.

  36. J.G. Nawrocki, J.N. Dupont, C.V. Robino, J.D. Puskar, and A.R. Marder: Weld. J., 2003, vol. 82(2), pp. 25s–34s.

    Google Scholar 

  37. I. Dayalan, P. Crasta, S. Pradhan, and R. Gupta: A Review on Stress Relaxation Cracking in Austenitic Stainless Steel. In: Proceedings of International Conference on Intelligent Manufacturing and Automation. Lecture Notes in Mechanical Engineering. Springer, Singapore 2020. https://doi.org/10.1007/978-981-15-4485-9_44

  38. S. He, H. Shang, A. Fernández-Caballero, A.D. Warren, D.M. Knowles, P.E.J. Flewitt, and T.L. Martin: Mat. Sci. Eng. A, 2021, vol. 807, p. 140859.

    Article  CAS  Google Scholar 

  39. H. Stahl, G. Smith, and S. Wastiaux: J. Fail. Anal. Preven., 2000, vol. 1, pp. 51–54.

    Google Scholar 

  40. C.J. Middleton: Metal. Sci., 1981, vol. 15(4), pp. 154–67.

    Article  CAS  Google Scholar 

  41. S. Bradley: Stress Relaxation Cracking, a Forgotten Phenomenon, Corrosion Pedia, 2021, www.corrosionpedia.com.

  42. K. Mariappan, V. Shankar, and A.K. Bhaduri: Mater. High. Temp., 2020, vol. 37(2), pp. 114–28.

    Article  CAS  Google Scholar 

  43. X. Xiao, D. Li, Y. Li, and S. Lu: J. Mater. Sci. Technol., 2022, vol. 100, pp. 82–90.

    Article  CAS  Google Scholar 

  44. P.J. Bouchard, P.J. Withers, S.A. McDonald, and R.K. Heenan: Acta Mater., 2003, vol. 52, pp. 23–34.

    Article  Google Scholar 

  45. T. Burnett, R. Geurts, H. Jazaeri, S. Northover, S. McDonald, S. Haigh, R. Bouchard, and P. Withers: Mater. Sci. Technol., 2015, vol. 31, pp. 522–34.

    Article  CAS  Google Scholar 

  46. H. Jazaeri, P. Bouchard, M. Hutchings, A. Mamun, and R. Heenan: Conference: 13th International Conference on Creep and Fracture of Engineering Materials and Structures at: Toulouse, 2015.

  47. H. Jazaeri, P. Bouchard, M. Hutchings, A. Mamun, and R. Heenan: Procedia Struct. Integr., 2016, vol. 2, pp. 942–49.

    Article  Google Scholar 

  48. H. Jazaeri, P. Bouchard, M. Hutchings, M. Spindler, A. Mamun, and R.K. Heenan: Metals, 2019, vol. 9, p. 318.

    Article  CAS  Google Scholar 

  49. P. Palanichamy, M. Vasudevan, and T. Jayakumar: Sci. Technol. Weld. Join., 2009, vol. 14(2), pp. 166–71.

    Article  CAS  Google Scholar 

  50. H.X. Yuan, Y.Q. Wang, Y.J. Shi, and L. Gardner: Thin-Walled Struct., 2014, vol. 79, pp. 38–51.

    Article  Google Scholar 

  51. P. Vasantharaja, M. Vasudevan, and P. Palanichamy: J. Manuf. Process., 2015, vol. 19, pp. 187–93.

    Article  Google Scholar 

  52. J.L. Chaboche: Int. J. Plast., 2008, vol. 24, pp. 1642–93.

    Article  CAS  Google Scholar 

  53. CEA, Cast3M, 2021, 2021. http://www-cast3m.cea.fr/.

  54. S.I. Wright, M.M. Nowell, and D.P. Field: Microsc Microanal., 2011, vol. 17(3), pp. 316–29.

    Article  CAS  Google Scholar 

  55. J.A. Brooks, J.C. Williams, and A.W. Thompson: Metall. Mater. Trans. A, 1983, vol. 14, pp. 1271–81.

    Article  Google Scholar 

  56. Grong, O: Metallurgical Modelling of Welding, 2nd. Edition, Institute of Materials, London, 1997

    Google Scholar 

  57. Y. Jiang, Y. Kan, and H. Chen: Metals, 2022, vol. 12, p. 116.

    Article  CAS  Google Scholar 

  58. K. Weman, 19-the weldability of steel, Welding Processes Handbook (Second Edition), Woodhead Publishing, 2012, pp. 191–206

  59. V. Vijayanand, M. Vasudevan, V. Ganesan, P. Parameswaran, K. Laha, and A.K. Bhaduri: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2804–14.

    Article  CAS  Google Scholar 

  60. M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe, and G. Eggeler: Acta Mat., 2015, vol. 90, pp. 94–104.

    Article  CAS  Google Scholar 

  61. I. Carneiro and S. Simões: Metals, 2020, vol. 10, p. 1097.

    Article  CAS  Google Scholar 

  62. Y.E.F. Nippes and J.P. Balaguer: Weld. J. Res Suppl., 1986, vol. 65, pp. 237–43.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the CEA research project MATNA, related to the Generation IV program.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo F. Morgeneyer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Py-Renaudie, B., Goncalves, D., Pascal, S. et al. Effect of Welding Microstructure on Stress Relaxation Cracking Studied by Controlled Residual Stress Generation in a 316L(N) Austenitic Stainless Steel. Metall Mater Trans A 54, 4650–4670 (2023). https://doi.org/10.1007/s11661-023-07182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07182-x

Navigation