Skip to main content
Log in

Microstructural stability of titanium-modified type 316 and type 321 stainless steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Optical metallography, transmission electron microscopy, and X-ray diffraction from bulk extracted residues were used to investigate the microstructural stability in the temperature range 450°C to 950°C of a titanium-modified type 316 stainless steel and to compare this steel to a type 321 heat. The effect of cold deformation prior to aging was also investigated. Compared to standard type 316 stainless steel, the nucleation of M23C6 was delayed and its growth retarded in the titanium modified alloy due to early formation of TiC and Ti4C2S2 which reduced the carbon content in the matrix. Precipitation of the intermetallic σ and χ phases was faster in the titanium modified alloy. The type 321 material formed both M23C6 and the intermetallic phases less rapidly than either standard or titanium-modified type 316 steels. The relative tendencies toward intermetallic compound formation in various austentic stainless steels are discussed in terms of an “effective equivalent Cr content” remaining in the austenitic matrix after carbide precipitation. Cold work accelerated the precipitation rate of M23C6 and σ, but it suppressed χ formation due to preferential early σ formation. Early sigma formation was often associated with recrystallization of the cold worked matrix. Mechanisms accounting for this behavior are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Martin and J. R. Weir:Amer. Soc. Test. Mater. Spec., Tech. Publ., 1968, vol. 426, p. 44.

    Google Scholar 

  2. P. R. Huebotter, T. R. Bump, W. T. Sha, D. R. Eggen, and P. J. Fulford: ANL—786, Argonne National Laboratory, Argonne, Illinois, April 1971.

    Google Scholar 

  3. E. E. Bloom:Proceedings of Conference on “Irradiation Embrittlement and Creep in Fuel Cladding and Core Components,” p. 93, British Nuclear Energy Society, 1973.

  4. J. L. Straalsund, H. R. Brager, and J. J. Holmes:Radiation-Induced Voids in Metals, J. W. Corbett and L. C. Ianiello, eds, USAEC Symposium Series 26, p. 142, Albany, 1971.

  5. H. R. Brager and J. L. Straalsund:J. Nuclear Mater., 1973, vol. 46, p. 103.

    Article  ADS  CAS  Google Scholar 

  6. G. F. Tisinai, J. K. Stanley, and C. H. Samans:Trans. AIME, 1956, vol. 206, p. 600.

    Google Scholar 

  7. P. Duhaj, J. Ivan, and E. Makovicky:J. Iron Steel Inst., London, 1968, vol. 206, p. 1245.

    CAS  Google Scholar 

  8. B. Weiss and R. Stickler:Met Trans., 1972, vol. 3, p. 851.

    Article  CAS  Google Scholar 

  9. J. E. Spruiell, J. A. Scott, C. S. Ary, and R. L. Hardin:Met Trans., 1973, vol. 4, p. 1533.

    CAS  Google Scholar 

  10. E. E. Bloom and J. O. Stiegler:Nucl. Tech., 1973, vol. 17, p. 24. Also E. E. Bloom, private communication, 1974. 11. J. E. Spruiell and R. E. Gehlbach:Trans. Amer. Nucl. Soc., 1972, vol. 15, no. 2, p. 769.

    CAS  Google Scholar 

  11. ASTM Powder Diffraction File card no. 6-0614 and 6-0642, Amer. Soc. Test. Materl. Philadelphia, Pa.

  12. J. M. Leitnaker and R. E. Gehlbach: ORNL-TM-4543, Oak Ridge National Laboratory, Oak Ridge, Tennessee, July 1974.

    Google Scholar 

  13. S. J. Rosenberg and J. H. Darr:Trans. ASM, 1949, vol. 41, p. 1261.

    Google Scholar 

  14. W. O. Binder, C. M. Brown, and R. Franks:Trans. ASM, 1949, vol. 41, p. 1301.

    Google Scholar 

  15. M. E. Nicholson, C. H. Samans, and F. J. Shortsleeve:Trans. ASM, 1952, vol. 44, p. 601.

    Google Scholar 

  16. E. A. Sticha:Proc. American Power Conference, ITT, vol. 22, p. 288, Chicago, Ill., 1960.

  17. F. C. Hull:Weld. J., 1973, vol. 52, p. 104-s.

    Google Scholar 

  18. A. L. Schaeffler:Weld. J., 1947, vol. 20, p. 601-s.

    Google Scholar 

  19. H. Wiegand and M. Doruk:Arch. Eisenhuettenw., 1962, vol. 8, p. 559.

    Google Scholar 

  20. H. Tuma, P. Gröbner, and K. Löbl:Arch. Eisenhuettenw., 1969, vol. 40, p. 727.

    CAS  Google Scholar 

  21. H. Tuma, M. Vyklicky, and K. Löbl:Arch. Eisenhuettenw., 1970, vol. 41, p. 983.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Arnold S. Grot was formerly a Graduate Assistant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grot, A.S., Spruiell, J.E. Microstructural stability of titanium-modified type 316 and type 321 stainless steel. Metall Trans A 6, 2023–2030 (1975). https://doi.org/10.1007/BF03161827

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161827

Keywords

Navigation