Skip to main content

Advertisement

Log in

Martensite Boundary Characteristics on Cycle- and Time-Dependent Fatigue Crack Growth Paths of Tempered Lath Martensitic Steels in a 90 MPa Gaseous Hydrogen Atmosphere

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural paths of hydrogen-assisted fatigue crack growth (HAFCG) in tempered martensitic steels were investigated relying on martensite boundary characteristics. Factors determining the HAFCG paths were tensile strength (TS)-dependent. HAFCG paths occurred preferentially along prior austenite grain boundaries with a brittle trend in 1025-MPa-TS steel. However, 811-MPa-TS steel showed HAFCG predominantly along block boundaries with large plasticity evolution, indicating that the mechanism of HAFCG in lower-TS steel required the assistance of plasticity accumulation during cyclic loadings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. The fraction of PAGB crack in T550 was approximately 40 pct when considering trans-lath cracks, which was 10 to 20 pct higher than intergranular fracture area fraction measured in the previous study [8]. This mismatch is probably owing to measurement errors caused by the presence of plasticity-related traces on the fracture surfaces and a difference between two- and three-dimensional analyses.

References

  1. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99.

    Article  CAS  Google Scholar 

  2. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–88.

    Article  CAS  Google Scholar 

  3. M. Nagumo: Fundamentals of Hydrogen Embrittlement, 1st ed. Springer, Tokyo JPN, 2016.

    Book  Google Scholar 

  4. Y. Murakami and S. Matsuoka: Eng. Fract. Mech., 2010, vol. 77, pp. 1926–40.

    Article  Google Scholar 

  5. H. Matsumiya, A. Shibata, K. Okada, and N. Tsuji: Int. J. Hydrogen Energy, 2021, vol. 46, pp. 37509–7517.

    Article  CAS  Google Scholar 

  6. L.B. Peral, A. Zafra, S. Blasón, C. Rodríguez, and J. Belzunce: Int. J. Fatigue, 2019, vol. 120, pp. 201–14.

    Article  CAS  Google Scholar 

  7. S. Matsuoka, H. Matsunaga, J. Yamabe, S. Hamada, and T. Iijima: Trans. JSME (in Japanese), 2017, vol. 83, pp. 17-00264-17–00264

  8. A. Setoyama, Y. Ogawa, M. Nakamura, Y. Tanaka, T. Chen, M. Koyama, and H. Matsunaga: Int. J. Fatigue, 2022, vol. 163, p. 107039.

    Article  CAS  Google Scholar 

  9. R.P. Gangloff and B.P. Somerday: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, vol. 2, Woodhead Publishing Limited, Cambridge (UK), 2012.

    Book  Google Scholar 

  10. A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, and I.M. Robertson: Acta Mater., 2014, vol. 74, pp. 244–54.

    Article  CAS  Google Scholar 

  11. M. Wang, E. Akiyama, and K. Tsuzaki: Corros. Sci., 2006, vol. 48, pp. 2189–202.

    Article  CAS  Google Scholar 

  12. S. Li, G. Zhu, and Y. Kang: J. Alloys Compd., 2016, vol. 675, pp. 104–5.

    Article  CAS  Google Scholar 

  13. M. Yang, Y. Zhong, and Y. long Liang: Met. Mater. Int., 2018, vol. 24, pp. 970–80.

    Article  CAS  Google Scholar 

  14. ASTM E647−13: Standard Test Method for Measurement of Fatigue Crack Growth Rates, 2014.

  15. C. Cayron: J. Appl. Crystallogr., 2007, vol. 40, pp. 1183–88.

    Article  CAS  Google Scholar 

  16. P.P. Suikkanen, C. Cayron, A.J. DeArdo, and L.P. Karjalainen: J. Mater. Sci. Technol., 2011, vol. 27, pp. 920–30.

    Article  CAS  Google Scholar 

  17. R. Kakimoto, M. Koyama, and K. Tsuzaki: ISIJ Int., 2019, vol. 59, pp. 2334–342.

    Article  CAS  Google Scholar 

  18. N. Allain-Bonasso, F. Wagner, S. Berbenni, and D.P. Field: Mater. Sci. Eng. A, 2012, vol. 548, pp. 56–63.

    Article  CAS  Google Scholar 

  19. Y. Momotani, A. Shibata, T. Yonemura, Y. Bai, and N. Tsuji: Scr. Mater., 2020, vol. 178, pp. 318–23.

    Article  CAS  Google Scholar 

  20. S. Morito, H. Yoshida, T. Maki, and X. Huang: Mater. Sci. Eng. A, 2006, vol. 438–440, pp. 237–40.

    Article  Google Scholar 

  21. A. Shibata, T. Yonemura, Y. Momotani, M. heom Park, S. Takagi, Y. Madi, J. Besson, and N. Tsuji: Acta Mater., 2021, vol. 210, p. 6828.

    Article  Google Scholar 

  22. Y. Takeda and C.J. McMahon: Metall. Trans. A, 1981, vol. 12A, pp. 1255–66.

    Article  Google Scholar 

  23. R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: Acta Mater., 2002, vol. 50, pp. 4177–89.

    Article  CAS  Google Scholar 

  24. P. Lejček: Springer Ser. Mater. Sci., 2010, vol. 136, pp. 173–201.

    Article  Google Scholar 

  25. M. Yamaguchi, J. Kameda, K.I. Ebihara, M. Itakura, and H. Kaburaki: Philos. Mag., 2012, vol. 92, pp. 1349–68.

    Article  CAS  Google Scholar 

  26. J. Kameda and C.J. McMahon: Metall. Trans. A, 1983, vol. 14A, pp. 903–11.

    Article  Google Scholar 

  27. S. Lynch: Corros. Rev., 2012, vol. 30, pp. 105–23.

    CAS  Google Scholar 

  28. E. Martínez-Pañeda, C.F. Niordson, and R.P. Gangloff: Acta Mater., 2016, vol. 117, pp. 321–2.

    Article  Google Scholar 

  29. C.J. McMahon Jr.: Eng. Fract. Mech., 2001, vol. 68, pp. 773–88.

    Article  Google Scholar 

  30. G.L. Pioszak and R.P. Gangloff: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4025–5.

    Article  Google Scholar 

  31. C. Wang, M. Wang, J. Shi, W. Hui, and H. Dong: Scr. Mater., 2008, vol. 58, pp. 492–95.

    Article  CAS  Google Scholar 

  32. K. Okada, A. Shibata, Y. Takeda, and N. Tsuji: Int. J. Fatigue, 2021, vol. 143, p. 105921.

    Article  CAS  Google Scholar 

Download references

This work was supported financially by the Japan Society for the Promotion of Science (JSPS) KAKENHI (JP20H02457) and a research project entitled “Mechanism from incubation period to fracture in hydrogen embrittlement of high-strength steels” funded by the Iron and Steel Institute of Japan (ISIJ) and supported by JST, the establishment of university fellowships toward the creation of science technology innovation (JPMJFS2102). The authors acknowledge the cooperation of A. Setoyama for the preparation and provision of the tested CT specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motomichi Koyama.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Koyama, M., Ogawa, Y. et al. Martensite Boundary Characteristics on Cycle- and Time-Dependent Fatigue Crack Growth Paths of Tempered Lath Martensitic Steels in a 90 MPa Gaseous Hydrogen Atmosphere. Metall Mater Trans A 54, 2512–2518 (2023). https://doi.org/10.1007/s11661-023-07041-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07041-9

Navigation