Skip to main content
Log in

Tools for the Assessment of the Laser Printability of Nickel Superalloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 11 April 2023

This article has been updated

Abstract

Additive Manufacturing (AM) is a revolutionary technology with great interest from the aerospace sector, due to the capability of manufacturing complex geometries and repairing of damaged components. A significant volume of research is being conducted with high-temperature alloys, particularly nickel superalloys. However, the high-temperature properties of nickel superalloys are derived from the high fraction of strengthening precipitates, which in turn, lead to poor amenability to additive manufacture. Various cracking modes are common in nickel superalloys, primarily as a result of the high level of alloying and the extreme thermal conditions experienced in AM. Herein, crack susceptibility calculations from literature were critically analyzed and combined, resulting in a simple failure susceptibility that correlates with literature. Currently, the range of alloys which have been tested in AM and reported in literature is limited and lacks a standard methodology, making accurate assessment of printability difficult. Scheil solidification calculations were performed, testing solute trapping (ST) and back diffusion models for both the cooling rates associated with laser powder bed fusion (L-PBF) and laser-directed energy deposition (L-DED). The results confirm that L-PBF exhibits cooling rates that can result in ST, unlike in L-DED. These differences mean that alloys cannot be developed more generally for AM, but must be developed with a specific AM process in mind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data included in manuscript and appendix; clarification available on request from the authors.

Change history

References

  1. W.T. Carter and M.G. Jones: Proc. SFF Symp., 1993, pp. 51–59.

  2. L.N. Carter, M.M. Attallah, and R.C. Reed: Superalloys 2012, 2012, pp. 577–86.

  3. J.F.S. Markanday: Mater. Sci. Technol., 2022, https://doi.org/10.1080/02670836.2022.2068759.

    Article  Google Scholar 

  4. H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, and T. DebRoy: Prog. Mater. Sci., 2020, https://doi.org/10.1016/j.pmatsci.2020.100703.

    Article  Google Scholar 

  5. T. Mukherjee, J.S. Zuback, A. De, and T. DebRoy: Sci. Rep., 2016, vol. 6, p. 19717.

    Article  CAS  Google Scholar 

  6. L. Johnson, M. Mahmoudi, B. Zhang, R. Seede, J.T. Maier, H.J. Maier, I. Karaman, and A. Elwany: Acta Mater., 2019, vol. 176, pp. 1–25.

    Article  Google Scholar 

  7. American Welding Society (AWS): Standard Welding Terms and Definitions, AWS, Miami, 2010.

    Google Scholar 

  8. R.D. Campbell and D.W. Walsh: ASM Handbook: Welding, Brazing, and Soldering, vol. 6, ASM, Metals Park, 1993, pp. 603–13.

    Book  Google Scholar 

  9. J.N. DuPont, J.C. Lippold, and S.D. Kiser: Welding Metallurgy and Weldability of Nickel-Base Alloys, Wiley, Hoboken, 2009.

    Book  Google Scholar 

  10. E.F. Nippes and W.F. Savage: Weld. J., 1949, vol. 28, pp. 534–46.

    Google Scholar 

  11. S.D. Kiser: ASM Handbook: Welding, Brazing, and Soldering, vol. 6, ASM, Metals Park, 1993.

    Google Scholar 

  12. H.N. Moosavy, M.R. Aboutalebi, S.H. Seyedein, M. Khodabakhshi, and C. Mapelli: Int. J. Miner. Metall. Mater., 2013, vol. 20, pp. 1183–191.

    Article  CAS  Google Scholar 

  13. D. Dye, O. Hunziker, and R.C. Reed: Acta Mater., 2001, vol. 49, pp. 683–97.

    Article  CAS  Google Scholar 

  14. N.L. Richards and M.C. Chaturvedi: Int. Mater. Rev., 2000, vol. 45, pp. 109–29.

    Article  CAS  Google Scholar 

  15. M. Durand-Charre: The Microstructure of Superalloys, Gordon and Breach Science Publishers, London, 1997.

    Google Scholar 

  16. M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, 2nd ed. ASM International, Materials Park, 2002.

    Book  Google Scholar 

  17. R.C. Reed: The Superalloys Fundamentals and Applications, vol. 9780521859042, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  18. A.T. Clare, R.S. Mishra, M. Merklein, H. Tan, I. Todd, L. Chechik, J. Li, and M. Bambach: J. Mater. Process. Technol., 2021, https://doi.org/10.1016/j.jmatprotec.2021.117358.

    Article  Google Scholar 

  19. Y.T. Tang, C. Panwisawas, J.N. Ghoussoub, Y. Gong, J.W.G. Clark, A.A.N. Németh, D.G. McCartney, and R.C. Reed: Acta Mater., 2021, vol. 202, pp. 417–36.

    Article  CAS  Google Scholar 

  20. B.D. Conduit, T. Illston, S. Baker, D.V. Duggappa, S. Harding, H.J. Stone, and G.J. Conduit: Mater. Des., 2019, vol. 168, 107644.

    Article  CAS  Google Scholar 

  21. M.M. Attallah, R. Jennings, X. Wang, and L.N. Carter: MRS Bull., 2016, vol. 41, pp. 758–64.

    Article  CAS  Google Scholar 

  22. H. Naffakh Moosavy, M.R. Aboutalebi, S.H. Seyedein, and C. Mapelli: Mater. Charact., 2013, vol. 82, pp. 41–9.

    Article  CAS  Google Scholar 

  23. Q. Han, R. Mertens, M.L. Montero-Sistiaga, S. Yang, R. Setchi, K. Vanmeensel, B. Van Hooreweder, S.L. Evans, and H. Fan: Mater. Sci. Eng. A, 2018, vol. 732, pp. 228–39.

    Article  CAS  Google Scholar 

  24. Oxmet Technologies: ABD-900AM, Oxmet Technologies, Oxon, 2021.

    Google Scholar 

  25. T.M. Pollock, A.J. Clarke, and S.S. Babu: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 6000–019.

    Article  Google Scholar 

  26. M.C. Hardy, C. Argyrakis, H.S. Kitaguchi, A.S. Wilson, R.C. Buckingham, K. Severs, S. Yu, C. Jackson, E.J. Pickering, S.C.H. Llewelyn, C. Papadaki, K.A. Christofidou, P.M. Mignanelli, A. Evans, D.J. Child, H.Y. Li, N.G. Jones, C.M.F. Rae, P. Bowen, and H.J. Stone: Proc. 14th Int. Symp. Superalloys. https://doi.org/10.1007/978-3-030-51834-9_2

  27. Haynes International: HAYNES® 282® Alloy Brochure, Haynes International, Kokomo, 2021.

    Google Scholar 

  28. ATI: ATI 718Plus® Technical Data Sheet, ATI, 2013.

  29. M. Prager and C.S. Shira: WRC Bull., 1968, vol. 6, pp. 1–55.

    Google Scholar 

  30. M.H. Haafkens and J.H.G. Matthey: Maintenance in Service of High Temperature Parts. Agard Conference Proceedings No. 317, vol. 317, 1981.

  31. B. Wahlmann, D. Leidel, M. Markl, and C. Körner.

  32. N. Kwabena Adomako, N. Haghdadi, and S. Primig: Mater. Des., 2022, vol. 223, p. 111245.

    Article  CAS  Google Scholar 

  33. S. Catchpole-Smith, N. Aboulkhair, L. Parry, C. Tuck, I.A. Ashcroft, and A. Clare: Addit. Manuf., 2017, vol. 15, pp. 113–22.

    CAS  Google Scholar 

  34. M.B. Henderson, D. Arrell, R. Larsson, M. Heobel, and G. Marchant: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 13–21.

    Article  CAS  Google Scholar 

  35. S. Kou: Acta Mater., 2015, vol. 88, pp. 366–74.

    Article  CAS  Google Scholar 

  36. N. Wang, S. Mokadem, M. Rappaz, and W. Kurz: Acta Mater., 2004, vol. 52, pp. 3173–182.

    Article  CAS  Google Scholar 

  37. D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1511–519.

    Article  CAS  Google Scholar 

  38. N. Coniglio and C.E. Cross: Int. Mater. Rev., 2013, vol. 58, pp. 375–97.

    Article  CAS  Google Scholar 

  39. T.W. Clyne and G.J. Davies: in Solidification and Casting of Metals, Sheffield, 1977, pp. 275–78.

  40. M. Rappaz, J.-M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–55.

    Article  CAS  Google Scholar 

  41. E.A. Ott, J. Groh, and H. Sizek: Proc. Int. Symp. Superalloys Var. Deriv., 2005, pp. 35–45.

  42. L.N. Carter, C. Martin, P.J. Withers, and M.M. Attallah: J. Alloys Compd., 2014, vol. 615, pp. 338–47.

    Article  CAS  Google Scholar 

  43. G.A. Young, T.E. Capobianco, M.A. Penik, B.W. Morris, and J.J. McGee: Weld. J., 2008, vol. 87, pp. 31S-43S.

    Google Scholar 

  44. C.T. Sims, N.S. Stoloff, and W.C. Hagel: Superalloys II: High-Temperature Materials for Aerospace and Industrial Power, Wiley, Hoboken, 1987.

    Google Scholar 

  45. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.

    Article  CAS  Google Scholar 

  46. W. Kurz and R. Trivedi: Mater. Sci. Eng. A, 1994, vol. 179–180, pp. 46–51.

    Article  Google Scholar 

  47. R. Deffley: University of Sheffield, 2012.

  48. J. Hunt, F. Derguti, and I. Todd: Ironmak. Steelmak., 2014, vol. 41, pp. 254–56.

    Article  CAS  Google Scholar 

  49. R.L. Dreshfield: NASA Tech. Note, 1970.

  50. H.J. Murphy, C.T. Sims, and A.M. Beltran: Superalloys 1968, 1968, pp. 47–66.

  51. C.L. Frederick: University of Tennessee, Knoxville, 2018.

  52. F. Tancret and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2003, vol. 19, p. 291.

    Article  CAS  Google Scholar 

  53. R.C. Reed, T. Tao, and N. Warnken: Acta Mater., 2009, vol. 57, pp. 5898–913.

    Article  CAS  Google Scholar 

  54. M.A. Charpagne, K.V. Vamsi, Y.M. Eggeler, S.P. Murray, C. Frey, S.K. Kolli, and T.M. Pollock: Acta Mater., 2020, vol. 194, pp. 224–35.

    Article  CAS  Google Scholar 

  55. S.P. Murray, K.M. Pusch, A.T. Polonsky, C.J. Torbet, G.G.E. Seward, N. Zhou, S.A.J. Forsik, P. Nandwana, M.M. Kirka, R.R. Dehoff, W.E. Slye, and T.M. Pollock: Nat. Commun., 2020, vol. 11, pp. 1–1.

    Article  Google Scholar 

  56. T.M. Smith, A.C. Thompson, T.P. Gabb, C.L. Bowman, and C.A. Kantzos: Sci. Rep., 2020, vol. 10, pp. 1–9.

    Article  CAS  Google Scholar 

  57. F. Markanday, G. Conduit, B. Conduit, J. Pürstl, K. Christofidou, L. Chechik, G. Baxter, C. Heason, and H. Stone: Data-Centric Eng., 2022, https://doi.org/10.1017/dce.2022.31.

    Article  Google Scholar 

  58. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: CALPHAD Comput. Coupling Phase Diagrams Thermochem., 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  59. J.N. Ghoussoub, Y.T. Tang, W.J.B. Dick-Cleland, A.A.N. Németh, Y. Gong, D.G. McCartney, A.C.F. Cocks, and R.C. Reed: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 962–83.

    Article  Google Scholar 

  60. S. Griffiths, H. Ghasemi Tabasi, T. Ivas, X. Maeder, A. De Luca, K. Zweiacker, R. Wróbel, J. Jhabvala, R.E. Logé, and C. Leinenbach: Addit. Manuf., 2020, https://doi.org/10.1016/j.addma.2020.101443.

    Article  Google Scholar 

  61. J. Xu, P. Kontis, R.L. Peng, and J. Moverare: Acta Mater., 2022, vol. 240, 118307.

    Article  CAS  Google Scholar 

  62. N. Zhou, A.D. Dicus, S.A.J. Forsik, T. Wang, G.A. Colombo, and M.E. Epler: in Superalloys 2020, Springer, 2020, pp. 1046–54.

  63. J.U. Park, S.Y. Jun, B.H. Lee, J.H. Jang, B.S. Lee, H.J. Lee, J.H. Lee, and H.U. Hong: Addit. Manuf., 2022, vol. 52, 102680.

    CAS  Google Scholar 

  64. H. Yu, J. Liang, Z. Bi, J. Li, and W. Xu: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 1945–954.

    Article  Google Scholar 

  65. Y. Sato: Jpn. J. Appl. Phys., 2011, vol. 50, pp. 15–8.

    Google Scholar 

  66. Y. Sato, K. Sugisawa, D. Aoki, and T. Yamamura: 17th Eur. Conf. Thermophys. Prop., 2005, pp. 1–5.

  67. T. Illston: Int. Conf. Addit. Manuf. 2012, 2012.

  68. D. Liu, J.C. Lippold, J. Li, S.R. Rohklin, J. Vollbrecht, and R. Grylls: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4454–469.

    Article  Google Scholar 

  69. A.J. Pinkerton, M. Karadge, W. Ul Haq Syed, and L. Li: J. Laser Appl., 2006, vol. 18, pp. 216–26.

    Article  CAS  Google Scholar 

  70. K.A. Mumtaz, P. Erasenthiran, and N. Hopkinson: J. Mater. Process. Technol., 2008, vol. 195, pp. 77–87.

    Article  CAS  Google Scholar 

  71. J. Grodzki, N. Hartmann, R. Rettig, E. Affeldt, and R.F. Singer: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2914–926.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the EPSRC Rolls-Royce Strategic Partnership Grant, MAPP (Grant EP/P006566/1) and EPSRC (Grant EP/R512175/1). The provision of supporting information from Rolls-Royce plc. is gratefully acknowledged. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) Licence to any Author Accepted Manuscript version arising.

Author Contributions

LC: Conceptualization, Methodology, Investigation, and Writing—Original Draft. KAC: Conceptualization, and Writing—Review and Editing. LF: Conceptualization, and Writing—Review and Editing. MT: Software and Methodology. GB: Conceptualization. IT: Conceptualization, and Writing—Review and Editing, Supervision, and Funding.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lova Chechik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: On the fifth page, fourth paragraph (Alloyed) was removed after Tang et al.

Appendix

Appendix

See Tables IV, V, and VI.

Table IV Raw Susceptibilities for the 8 Susceptibilities for Each of the 21 Alloys
Table V Normalized Susceptibilities for the 8 Susceptibilities for Each of the 21 Alloys
Table VI Comparison of Different Thermo-Calc Scheil Calculations for the Main Alloys Being Analyzed

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chechik, L., Christofidou, K.A., Farquhar, L. et al. Tools for the Assessment of the Laser Printability of Nickel Superalloys. Metall Mater Trans A 54, 2421–2437 (2023). https://doi.org/10.1007/s11661-023-07029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07029-5

Navigation