Skip to main content

Advertisement

Log in

Creep and Tensile Behavior of a Nickel-Based Single Crystal Superalloy With a Bimodal γ′ Precipitation

  • Topical Collection: Processing and Applications of Superalloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Publisher Correction to this article was published on 19 June 2023

This article has been updated

Abstract

High temperature aircraft engines components made from single crystal nickel-based superalloys typically have homogenous γ/γ′ microstructure after conventional solution and aging heat treatments. However, manufacturing processes as well as service conditions may alter the material’s microstructure which can lead to a multimodal γ′ precipitation with regular secondary precipitates (400 to 500 nm) and smaller (10 to 100 nm) tertiary precipitates. In this study, such a bimodal microstructure was first obtained after a heat treatment study and the impact of such a microstructure on mechanical behavior was then investigated. Tensile and creep properties are sensitive to such a bimodal microstructure below 900 °C with a 60 to 120 MPa reduction in yield stress and a creep lifetime reduced by factors of 2 to 15 compared to a unimodal reference microstructure. It is suggested that tertiary γ′ precipitates facilitates secondary γ′ shearing reducing tensile and creep properties. Above 900 °C, no difference in tensile and creep behavior has been observed between both kinds of microstructure as tertiary precipitates are rapidly dissolving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  2. J. Cormier and C.-A. Gandin: Nickel Base Single Crystals Across Length Scales, Elsevier, Amsterdam, 2022, pp. 193–222.

    Book  Google Scholar 

  3. P. Caron, P.J. Henderson, T. Khan, and M. McLean: Scr. Metall., 1986, vol. 20, pp. 875–80.

    Article  CAS  Google Scholar 

  4. J. Coakley, D. Ma, M. Frost, D. Dye, D.N. Seidman, D.C. Dunand, and H.J. Stone: Acta Mater., 2017, vol. 135, pp. 77–87.

    Article  CAS  Google Scholar 

  5. J. Cormier, X. Milhet, and J. Mendez: J. Mater. Sci., 2007, vol. 42, pp. 7780–86.

    Article  CAS  Google Scholar 

  6. R. Giraud, Z. Hervier, J. Cormier, G. Saint-Martin, F. Hamon, X. Milhet, and J. Mendez: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 131–46.

    Article  Google Scholar 

  7. J.-B. le Graverend, J. Cormier, M. Jouiad, F. Gallerneau, P. Paulmier, and F. Hamon: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5295–302.

    Article  Google Scholar 

  8. J. Cormier, V. Caccuri, J.-B. le Graverend, and P. Villechaise: Scripta Mater., 2017, vol. 129, pp. 100–03.

    Article  CAS  Google Scholar 

  9. M. Zhang, Y. Zhao, Y. Guo, Y. Liu, J. Zhang, Y. Luo, and Z. Yao: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 2214–25.

    Article  Google Scholar 

  10. J. Cormier and G. Cailletaud: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6300–12.

    Article  Google Scholar 

  11. W. An, S. Utada, X. Guo, S. Antonov, W. Zheng, J. Cormier, and Q. Feng: J. Mater. Sci. Technol., 2022, vol. 104, pp. 269–84.

    Article  Google Scholar 

  12. K. Kakehi: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1249–59.

    Article  CAS  Google Scholar 

  13. C.M.F. Rae and R.C. Reed: Acta Mater., 2007, vol. 55, pp. 1067–81.

    Article  CAS  Google Scholar 

  14. C.M.F. Rae and L. Zhang: Mater. Sci. Technol., 2009, vol. 25, pp. 228–35.

    Article  CAS  Google Scholar 

  15. G. Drew, R. Reed, K. Kakehi, and C. Rae: in Superalloys 2004, 2004, Seven Springs, PA, TMS, pp. 127–36.

  16. C.M.F. Rae, M.A. Rist, D.C. Cox, R.C. Reed, and N. Matan: Metall. Mater. Trans. A., 2000, vol. 31A, pp. 2219–28.

    Article  CAS  Google Scholar 

  17. P. Caron and T. Khan: Mater. Sci. Eng., 1983, vol. 61, pp. 173–84.

    Article  CAS  Google Scholar 

  18. D.M. Shah and D.N. Duhl: in Superalloys 1984, 1984, Seven Springs, PA, TMS, pp. 105–14.

  19. P. Caron, Y. Ohta, Y.G. Nakagawa, and T. Khan: in Superalloys 1988, 1988, Seven Springs, PA, TMS, pp. 215–24.

  20. U.S. patent 4,643,782, 1984.

  21. F. Riallant, J. Cormier, A. Longuet, X. Milhet, and J. Mendez: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 351–60.

    Article  Google Scholar 

  22. J.R. Vaunois, J. Cormier, and P. Villechaise: in 7th International Symposium on Superalloy 718 and Derivatives, 2010, Pittsburgh, PA, TMS, pp. 199–213.

  23. B. Roebuck, D. Cox, and R. Reed: Scripta Mater., 2001, vol. 44, pp. 917–21.

    Article  CAS  Google Scholar 

  24. J. Cormier, M. Jouiad, F. Hamon, P. Villechaise, and X. Milhet: Philos. Mag. Lett., 2010, vol. 90, pp. 611–20.

    Article  CAS  Google Scholar 

  25. S. Steuer, Z. Hervier, S. Thabart, C. Castaing, T.M. Pollock, and J. Cormier: Mater. Sci. Eng. A, 2014, vol. 601, pp. 145–52.

    Article  CAS  Google Scholar 

  26. X. Milhet, M. Arnoux, V. Pelosin, and J. Colin: Metall. Mater. Trans. A., 2013, vol. 44A, pp. 2031–40.

    Article  Google Scholar 

  27. C.M.F. Rae, N. Matan, and R.C. Reed: Mater. Sci. Eng. A, 2001, vol. 300, pp. 125–34.

    Article  Google Scholar 

  28. X. Wu, A. Dlouhy, Y.M. Eggeler, E. Spiecker, A. Kostka, C. Somsen, and G. Eggeler: Acta Mater., 2018, vol. 144, pp. 642–55.

    Article  CAS  Google Scholar 

  29. X. Wu, P. Wollgramm, C. Somsen, A. Dlouhy, A. Kostka, and G. Eggeler: Acta Mater., 2016, vol. 112, pp. 242–60.

    Article  CAS  Google Scholar 

  30. N. Matan, D.C. Cox, C.M.F. Rae, and R.C. Reed: Acta Mater., 1999, vol. 47, pp. 2031–45.

    Article  CAS  Google Scholar 

  31. A. Epishin, T. Link, H. Klingelhöffer, B. Fedelich, U. Brückner, and P.D. Portella: Mater. Sci. Eng. A, 2009, vol. 510–511, pp. 262–65.

    Article  Google Scholar 

  32. R. Desmorat, A. Mattiello, and J. Cormier: Int. J. Plast, 2017, vol. 95, pp. 43–81.

    Article  CAS  Google Scholar 

  33. B. Fedelich, A. Epishin, T. Link, H. Klingelhöffer, G. Künecke, and P.D. Portella: in Superalloys 2012, 2012, Seven Springs, PA, TMS, pp. 491–500.

  34. J.-B. le Graverend, J. Cormier, F. Gallerneau, P. Villechaise, S. Kruch, and J. Mendez: Int. J. Plast, 2014, vol. 59, pp. 55–83.

    Article  Google Scholar 

  35. G. Cailletaud, J.P. Culie, and H. Kaczmarek: in Creep in Structures, A.R.S. Ponter and D.R. Hayhurst, eds., Springer, Berlin, Heidelberg, 1981, pp. 48–71.

  36. G. Cailletaud, J.P. Culié, and H. Kaczmarek: in Mechanical Behaviour of Materials, J. Carlsson and N.G. Ohlson, eds., Pergamon, 1984, pp. 255–61.

  37. T. Khan and P. Caron: Mater. Sci. Technol., 1986, vol. 2, pp. 486–92.

    Article  CAS  Google Scholar 

  38. D. Barba, E. Alabort, S. Pedrazzini, D.M. Collins, A.J. Wilkinson, P.A.J. Bagot, M.P. Moody, C. Atkinson, A. Jérusalem, and R.C. Reed: Acta Mater., 2017, vol. 135, pp. 314–29.

    Article  CAS  Google Scholar 

  39. B.H. Kear and B.J. Piearcey: Trans. TMS-AIME, 1976, vol. 239, pp. 1209–215.

    Google Scholar 

  40. B. Reppich: Acta Metall., 1982, vol. 30, pp. 87–94.

    Article  CAS  Google Scholar 

  41. B. Reppich, W. Kühlein, G. Meyer, D. Puppel, M. Schulz, and G. Schumann: Mater. Sci. Eng., 1986, vol. 83, pp. 45–63.

    Article  CAS  Google Scholar 

  42. E.I. Galindo-Nava, L.D. Connor, and C.M.F. Rae: Acta Mater., 2015, vol. 98, pp. 377–90.

    Article  CAS  Google Scholar 

  43. L. Thébaud, P. Villechaise, C. Crozet, A. Devaux, D. Béchet, J.-M. Franchet, A.-L. Rouffié, M. Mills, and J. Cormier: Mater. Sci. Eng. A, 2018, vol. 716, pp. 274–83.

    Article  Google Scholar 

  44. A.A. Hopgood and J.W. Martin: Mater. Sci. Eng., 1986, vol. 82, pp. 27–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the engineering students of ISAE-ENSMA, E. Lagardere, C. Lingois, L. Grau, A. Huet, A. Souksavat and R. Walter for their help in characterization of the alloys. Institut Pprime gratefully acknowledges “Contrat de Plan Etat-Région Nouvelle-Aquitaine” (CPER) as well as the "Fonds Européens de Développement Régional (FEDER)" for partial financial support to the reported work. JC is grateful to Safran Aircraft Engines for financial support and for continuous collaboration in the field of Ni-based SX superalloys mechanical properties for over 15 years.

Conflict of interest

The authors declare that they have no conflict of interest with the work presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Cormier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 19, 2022; accepted Feburary 17, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rame, J., Eyidi, D., Joulain, A. et al. Creep and Tensile Behavior of a Nickel-Based Single Crystal Superalloy With a Bimodal γ′ Precipitation. Metall Mater Trans A 54, 1496–1508 (2023). https://doi.org/10.1007/s11661-023-07022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07022-y

Navigation