Skip to main content
Log in

Effect of Overheating Events on Microstructure and Low-Cycle Fatigue Properties of a Nickel-Based Single-Crystal Superalloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Micro-mechanical response to overheating events is an important factor when considering the serviceable life of aero-engine components. A key lifing consideration is the low-cycle fatigue (LCF) behavior of nickel-based single-crystal superalloy components. In this study, the LCF response was investigated at different overheating temperatures (1100 to 1300 °C) and times (30 to 120 min). The overheating events had an impact on the γ' phase content, which was observed to decrease with the increase in overheating temperature and time (fully dissolving at 1300 °C). Due to the dissolution of γ' precipitates, the average γ' size was shifted to larger values, however, the subsequent cooling post the overheating events resulted in the formation of tertiary γ' and a bimodal particle distribution. During the LCF tests, that were performed after the overheating exposure, either cyclic hardening or softening was observed. It could be concluded that overheating exposures had no significant effect on the fracture features. However, overheating events resulted in a decrease of LCF properties, which was correlated to the local dislocation response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

source initiated on the surface oxide layer, (b) the fatigue source initiated on the casting pores in sub surface, (c) secondary cracks initiated on the surface oxide layer, (d) secondary cracks initiated on the internal pores, (e) slip steps, (f) river-like patterns

Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.C. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, New York, 2008, pp. 90–8.

    Google Scholar 

  2. T.M. Pollock and S. Tin: J. Propul. Power., 2006, vol. 22, pp. 361–74.

    Article  CAS  Google Scholar 

  3. J.T. Guo: Materials Science and Engineering for Superalloys: Part A, Science Press, Beijing, 2008, p. 456.

    Google Scholar 

  4. J.B. le Graverend, L. Dirand, A. Jacques, J. Cormier, O. Ferry, T. Schenk, F. Gallerneau, S. Kruch, and J. Mendez: Metall. Mater. Trans. A., 2012, vol. 34, pp. 3946–51.

    Article  Google Scholar 

  5. X.T. Guo, W.W. Zheng, C.B. Xiao, Y.R. Zheng, and Q. Feng: J. Mater. Eng., 2018, vol. 46, pp. 77–86.

    Google Scholar 

  6. R. Giraud, Z. Hervier, J. Cormier, G. Saint Martin, F. Hamon, X. Milhet, and J. Mendez: Metall. Mater. Trans. A., 2013, vol. 44, pp. 131–46.

    Article  CAS  Google Scholar 

  7. S.Z. Liu, Z.X. Shi, M. Han, and J.R. Li: Mater. Sci. Forum., 2017, vol. 898, pp. 517–22.

    Article  Google Scholar 

  8. Z.H. Yao, J.X. Dong, M.C. Zhang, and Q.Y. Yu: Trans. Mater. Heat Treat., 2011, vol. 32, pp. 43–49.

    CAS  Google Scholar 

  9. J.Y. Tong, K. Yagi, Y.R. Zheng, and Q. Feng: J. Alloys Compd., 2017, vol. 690, pp. 542–52.

    Article  CAS  Google Scholar 

  10. J. Cormier: Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys. New Jersey: Wiley, 2016, pp. 385-94.

  11. S. Steuer, Z. Hervier, S. Thabart, C. Castaing, T.M. Pollock, and J. Cormier: Mater. Sci. Eng. A., 2014, vol. 601, pp. 145–52.

    Article  CAS  Google Scholar 

  12. R. Giraud, J. Cormier, Z. Hervier, D. Bertheau, K. Harris, J. Wahl, X. Milhet, J. Mendez and A. Organista: Proceedings of the 13th Intenational Symposium of Superalloys, John Wiley & Sons Inc., New Jersey, 2016, pp. 385-394.

  13. K.J. Sun, X.Y. Gai, C.X. Li, and X.P. Song: Part: A Phys Test., 2009, vol. 45, pp. 393–401.

    CAS  Google Scholar 

  14. Z.H. Yao, B. Zhou, K.J. Yao, H.Y. Wang, J.X. Dong, and T. Davey: Materials., 2020, vol. 13, pp. 4758–75.

    Article  CAS  Google Scholar 

  15. D.A. Kazanskii, A.M. Klypina, and L.D. Chistyakova: Therm. Eng., 2011, vol. 58, pp. 519–25.

    Article  Google Scholar 

  16. Z.X. Shi and S.Z. Liu: Nonferrous Metal Mater. Eng., 2017, vol. 38, pp. 321–25.

    Google Scholar 

  17. H.J. Xie, J.R. Li, M. Han, J. Yu, L. Yang, and X.D. Yue: Rare Metal. Mater. Eng., 2018, vol. 47, pp. 2483–88.

    CAS  Google Scholar 

  18. J.B. le Graverend, J. Cormier, F. Gallerneau, S. Kruch, and J. Mendez: Int. J. Fatigue., 2016, vol. 91, pp. 257–63.

    Article  Google Scholar 

  19. A. Baldan: J. Mater. Sci., 2002, vol. 37, pp. 2379–2405.

    Article  CAS  Google Scholar 

  20. Y.S. Huang, X.G. Wang, C.Y. Cui, J.G. Li, L.H. Ye, G.C. Hou, Y.H. Yang, J.L. Liu, J.D. Liu, Y.Z. Zhou, and X.F. Sun: Mater. Sci. Eng. A., 2020, vol. 774, p. 138886.

    Article  Google Scholar 

  21. Z.X. Shi, J.R. Li, and S.Z. Liu: Prog. Nat. Sci.: Mater. Int., 2012, vol. 22, pp. 426–32.

    Article  Google Scholar 

  22. J. Yu, J.R. Li, Z.X. Shi, X.G. Wang, S.Z. Liu, and J.Q. Zhao: Rare Metal Mater. Eng., 2013, vol. 42, pp. 1654–58.

    Article  CAS  Google Scholar 

  23. A.B. Parsa, P. Wollgramm, H. Buck, A. Kostka, C. Somsen, A. Dlouhy, and G. Eggeler: Acta Mater., 2015, vol. 90, pp. 105–17.

    Article  CAS  Google Scholar 

  24. J. Zhang, Y.Y. Guo, M. Zhang, Z.Y. Yang, and Y.S. Luo: Acta Metall. Sin. (Engl. Lett.)., 2020, vol. 33, pp. 1423–32.

    Article  CAS  Google Scholar 

  25. K. Kakehi: Met. Mat. Trans. A., 1999, vol. 30A, pp. 1249–59.

    Article  CAS  Google Scholar 

  26. S. Suzuki, M. Sakaguchi, and H. Inoue: Mater. Sci. Eng. A., 2018, vol. 724, pp. 559–65.

    Article  CAS  Google Scholar 

  27. J.C. Liang, Z. Wang, H.F. Xie, H.J. Shi, and X.D. Li: Int. J. Fatigue., 2019, vol. 128, p. 105195.

    Article  CAS  Google Scholar 

  28. J.J. Yu, X.F. Sun, T. Jin, N. Zhao, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A., 2010, vol. 527, pp. 2379–89.

    Article  Google Scholar 

  29. L.M. Bortoluci Ormastronia, L. Mataveli Suave, A. Cervellon, P. Villechaise, and J. Cormier: Int. J. Fatigue., 2020, vol. 130, p. 105247.

    Article  Google Scholar 

  30. R. Jiang, D.J. Bull, A. Evangelou, A. Harte, F. Pierron, I. Sinclair, M. Preuss, X.T. Hu, and P.A.S. Reed: Int. J. Fatigue., 2018, vol. 114, pp. 22–33.

    Article  CAS  Google Scholar 

  31. S. Steuer, P. Villechaise, T.M. Pollock, and J. Cormier: Mater. Sci. Eng. A., 2015, vol. 645, pp. 109–15.

    Article  CAS  Google Scholar 

  32. H.U. Hong, J.G. Kang, B.G. Choi, I.S. Kim, Y.S. Yoo, and C.Y. Jo: Int. J. Fatigue., 2011, vol. 33, pp. 1592–99.

    Article  CAS  Google Scholar 

  33. L.Q. Cui, J.L. Liu, R.L. Peng, J.J. Yu, J. Moverare, and X.F. Sun: Mater. Charact., 2020, vol. 163, p. 110241.

    Article  CAS  Google Scholar 

  34. C. He, L. Liu, T.W. Huang, W.C. Yang, J. Zhang, and H.Z. Fu: Mater. Rep., 2019, vol. 33, pp. 2918–28.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51771017 and No. 52001297).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihao Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhao, Y., Guo, Y. et al. Effect of Overheating Events on Microstructure and Low-Cycle Fatigue Properties of a Nickel-Based Single-Crystal Superalloy. Metall Mater Trans A 53, 2214–2225 (2022). https://doi.org/10.1007/s11661-022-06663-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06663-9

Navigation