Skip to main content
Log in

Recrystallization Kinetics, Precipitate Evolution and Grain Refinement of Nb Stabilized Ferritic Stainless Steel for Producing Thicker Plate/Strip Industrially

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The study focuses on the processing of thick plate (≥ 12 mm) and strip (3 to 4 mm) where hot-rolling reduction is comparatively less. The recrystallization kinetics of hot-rolled plate was studied with detailed microstructural and texture evolution during annealing. The investigation was further extended to cold-rolling and annealing considering the industrial application in thicker strip production. Microstructure, texture and precipitates were characterized and mechanical properties were correlated with the processing schedule and microstructural parameters. Fine and recrystallized hot-band structure is required to get the desired fine microstructure in cold-rolled and annealed condition. Higher hot-band annealing time facilitated significant precipitation providing enhanced strengthening after cold-rolling and annealing treatment in spite of having coarser grain size. Mechanical properties were directly correlated to the high-angle, low-angle grain boundaries and geometrically necessary dislocations in the investigated steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Figure 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Zhang, Z. Liu, and G. Wang: J. Mater. Process. Technol., 2011, vol. 211, pp. 1051–59.

    Article  CAS  Google Scholar 

  2. R.P. Siqueira, H.R.Z. Sandim, and T.R. Oliveira: Mater. Sci. Eng. A, 2008, vol. 497, pp. 216–23.

    Article  Google Scholar 

  3. H. Yan, H. Bi, X. Li, and Z. Xu: Mater. Charact., 2009, vol. 60, pp. 204–09.

    Article  CAS  Google Scholar 

  4. A. Malfliet, F. Mompiou, F. Chassagne, J.D. Mithieux, B. Blanpain, and P. Wollants: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3333–43.

    Article  Google Scholar 

  5. W. Du, L.Z. Jiang, Q. She Sun, Z.Y. Liu, and X. Zhang: J. Iron Steel Res. Int., 2010, vol. 17, pp. 47–52.

    Article  CAS  Google Scholar 

  6. F. Gao, Z. Liu, H. Liu, and G. Wang: Mater. Charact., 2013, vol. 75, pp. 93–100.

    Article  CAS  Google Scholar 

  7. M.Y. Huh and O. Engler: Mater. Sci. Eng. A, 2001, vol. 308, pp. 74–87.

    Article  Google Scholar 

  8. X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao, and L. Jiang: Mater. Des., 2015, vol. 65, pp. 682–89.

    Article  CAS  Google Scholar 

  9. M. Burak and C. Meran: Mater. Des., 2012, vol. 33, pp. 376–83.

    Article  Google Scholar 

  10. E. Taban, E. Kaluc, and A. Dhooge: Mater. Des., 2009, vol. 30, pp. 4236–42.

    Article  CAS  Google Scholar 

  11. R.A. Lula: Stainless Steel, 2nd ed. American Society for Metals, Ohio, 1986.

    Google Scholar 

  12. Y.J. Chung, F. Barlat, and M. Lee: ISIJ Int., 2015, vol. 55, pp. 1048–57.

    Article  CAS  Google Scholar 

  13. B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1987, vol. 3, pp. 197–206.

    Article  CAS  Google Scholar 

  14. D. Chakrabarti: Thesis, University of Birmingham, 2007.

  15. M. Labonne, A. Graux, S. Cazottes, F. Danoix, F. Cuvilly, F. Chassagne, M. Perez, and V. Massardier: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3655–64.

    Article  Google Scholar 

  16. H.-J. Shin, J.-K. An, and D.N. Lee: Multiscale Model. Charact., 2004, vol. 114, pp. 275–82.

    Google Scholar 

  17. H.J. Shin, J.K. An, S.H.H. Park, and D.N. Lee: Acta Mater., 2003, vol. 51, pp. 4693–4706.

    Article  CAS  Google Scholar 

  18. S. Patra, A. Ghosh, J. Sood, L.K. Singhal, A.S. Podder, and D. Chakrabarti: Mater. Des., 2016, vol. 106, pp. 336–48.

    Article  CAS  Google Scholar 

  19. P. Modak, S. Patra, R. Mitra, and D. Chakrabarti: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 2219–34.

    Article  Google Scholar 

  20. K. Kimura, A. Yamamoto, T. Takeshita, and J. Harase: Nippon Steel Tech. Rep., 1996, vol. 71, pp. 11–16.

    Google Scholar 

  21. D. Chakrabarti, C. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423–38.

    Article  CAS  Google Scholar 

  22. ASTM E8: Astm, 2009, pp. 1–27.

  23. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Book Co, London, 1962.

    Google Scholar 

  24. R.W. Hertzberg: Deform. Fract. Mech. Eng. Mater. 2nd Ed. J. Wiley Sons, 1996.

  25. R.P. Siqueira, H.R.Z.Z. Sandim, T.R. Oliveira, and D. Raabe: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3513–19.

    Article  Google Scholar 

  26. N. Tsuji, K. Tsuzaki, and T. Maki: ISIJ Int., 1992, vol. 32, pp. 1319–28.

    Article  CAS  Google Scholar 

  27. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. Elsevier, London, 2004.

    Google Scholar 

  28. I.B. Timokhina, A.I. Nosenkov, A.O. Humphreys, J.J. Jonas, and E.V. Pereloma: ISIJ Int., 2004, vol. 44, pp. 717–24.

    Article  CAS  Google Scholar 

  29. M.R. Barnett and J.J. Jonas: ISIJ Int., 1997, vol. 37, pp. 706–14.

    Article  CAS  Google Scholar 

  30. M.R. Barnett and J.J. Jonas: ISIJ Int., 1997, vol. 37, pp. 697–705.

    Article  CAS  Google Scholar 

  31. D. Liu, A.O. Humphreys, M.R. Toroghinezhad, and J.J. Jonas: ISIJ Int., 2002, vol. 42, pp. 751–59.

    Article  CAS  Google Scholar 

  32. M.R. Toroghinejad, A.O. Humphreys, D. Liu, F. Ashrafizadeh, A. Najafizadeh, and J.J. Jonas: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1163–74.

    Article  CAS  Google Scholar 

  33. J.J. Jonas: J. Mater. Process. Tech., 2001, vol. 117, pp. 293–99.

    Article  CAS  Google Scholar 

  34. S. Patra, A. Ghosh, L.K. Singhal, A.S. Podder, J. Sood, V. Kumar, and D. Chakrabarti: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 294–313.

    Article  Google Scholar 

  35. F.J. Humphreys: J. Mater. Sci., 2001, vol. 36, pp. 3833–54.

    Article  CAS  Google Scholar 

  36. J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin: Acta Mater., 2009, vol. 57, pp. 2748–56.

    Article  CAS  Google Scholar 

  37. P.O. Malta, D.S. Alves, A.O.V. Ferreira, I.D. Moutinho, C.A.P. Dias, and D.B. Santos: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1288–1309.

    Article  Google Scholar 

  38. Y. Li, Y. Liu, C. Liu, C. Li, Y. Huang, H. Li, and W. Li: Mater. Lett., 2017, vol. 189, pp. 70–73.

    Article  CAS  Google Scholar 

  39. M.F. Ashby and R. Ebeling: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 1396–1404.

    CAS  Google Scholar 

  40. M.L. Xu: Northeastern University, Massachusetts, Boston, 2012.

    Google Scholar 

  41. H. Lu, H. Guo, W. Zhang, W. Liang, and Y. Liu: J. Mater. Process. Tech., 2020, vol. 281, 116645.

    Article  CAS  Google Scholar 

  42. Q. Lu, W. Xu, and S. Van Der Zwaag: Comput. Mater. Sci., 2014, vol. 84, pp. 198–205.

    Article  CAS  Google Scholar 

  43. M.F. Ashby: Strengthening Methods in Crystals, Applied science publisher Ltd. Elsevier, Amsterdam, 1971.

    Google Scholar 

  44. T. Takahashi, D. Ponge, and D. Raabe: Steel Res. Int., 2007, vol. 78, pp. 38–44.

    Article  CAS  Google Scholar 

  45. T. Gladman: The Physical Metallurgy of Microalloyed Steels, 1st ed. Institute of Materials, London, 1996.

    Google Scholar 

  46. X. Mao, X. Huo, X. Sun, and Y. Chai: J. Mater. Process. Technol., 2010, vol. 210, pp. 1660–66.

    Article  CAS  Google Scholar 

  47. M.A. Altuna, A. Iza-Mendia, and I. Gutiérrez: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4571–86.

    Article  Google Scholar 

  48. F.V. Braga, D.P. Escobar, T.A. Reis, N.J.L.D. Oliveira, and M.S. Andrade: J. Mater. Res. Technol., 2016, vol. 5, pp. 92–99.

    Article  Google Scholar 

  49. N. Meyer, Y. Bréchet, M. Véron, M. Mantel, P.E. Dubois, and O. Geoffroy: Mater. Sci. Forum, 2007, vol. 558–559, pp. 253–58.

    Article  Google Scholar 

Download references

Acknowledgments

Authors sincerely thank the research infrastructure development Grant (SGDRI-2015) received from SRIC, IIT Kharagpur. Acknowledge the experimental support received from the Department of Metallurgical and Materials Engineering and Central Research Facility, Indian Institute of Technology Kharagpur.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranabananda Modak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modak, P., Tyagi, K., Chakrabarti, D. et al. Recrystallization Kinetics, Precipitate Evolution and Grain Refinement of Nb Stabilized Ferritic Stainless Steel for Producing Thicker Plate/Strip Industrially. Metall Mater Trans A 54, 1024–1041 (2023). https://doi.org/10.1007/s11661-023-06979-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-06979-0

Navigation