Skip to main content
Log in

Hot Deformation Behavior of As-Cast 2101 Grade Lean Duplex Stainless Steel and the Associated Changes in Microstructure and Crystallographic Texture

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot deformation behavior of 2101 grade lean duplex stainless steel (DSS, containing ~5 wt pct Mn, ~0.2 wt pct N, and ~1.4 wt pct Ni) and associated microstructural changes within δ-ferrite and austenite (γ) phases were investigated by hot-compression testing in a GLEEBLE 3500 simulator over a range of deformation temperatures, T def [1073 K to 1373 K (800 °C to 1100 °C)], and applied strains, ε (0.25 to 0.80), at a constant true strain rate of 1/s. The microstructural softening inside γ was dictated by discontinuous dynamic recrystallization (DDRX) at a higher T def [1273 K to 1373 K (1000 °C to 1100 °C)], while the same was dictated by continuous dynamic recrystallization (CDRX) at a lower T def (1173 K (900 °C)]. Dynamic recovery (DRV) and CDRX dominated the softening inside δ-ferrite at T def ≥ 1173 K (900 °C). The dynamic recrystallization (DRX) inside δ and γ could not take place upon deformation at 1073 K (800 °C). The average flow stress level increased 2 to 3 times as the T def dropped from 1273 to 1173 K (1000 °C to 900 °C) and finally to 1073 K (800 °C). The average microhardness values taken from δ-ferrite and γ regions of the deformed samples showed a different trend. At T def of 1373 K (1100 °C), microhardness decreased with the increase in strain, while at T def of 1173 K (900 °C), microhardness increased with the increase in strain. The microstructural changes and hardness variation within individual phases of hot-deformed samples are explained in view of the chemical composition of the steel and deformation parameters (T def and ε).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. GLEEBLE is a trademark of Dynamic Systems Inc., New York, NY.

  2. Zeiss is a trademark of Carl Zeiss microscopy GmbH, Germany.

  3. MTex is a free matlab toolbox for analyzing and modeling crystallographic texture available on http://mtex-toolbox.github.io/.

  4. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  5. WALTER UHL is a trademark of technische mikroskopie GMbH & CO. KG, Germany.

Abbreviations

CDRX:

Continuous dynamic recrystallization

DDRX:

Discontinuous dynamic recrystallization

DRV:

Dynamic recovery

DRX:

Dynamic recrystallization

DSS:

Duplex stainless steel

EBSD:

Electron backscatter diffraction

HAB:

High-angle boundary

IPF:

Inverse pole figure

LAB:

Low-angle boundary

LAM:

Local average misorientation

ODF:

Orientation distribution function

T def :

Deformation temperature

ε :

Applied strain

\( \dot{\varepsilon } \) :

Strain rate

γ:

Austenite

δ:

Delta-ferrite

References

  1. Y.L. Fang, Z.Y. Liu, and G.D. Wang: J. Iron Steel Res. Int., 2011, vol. 18, pp. 58–62.

    Article  Google Scholar 

  2. Y. Han, D. Zou, Z. Chen, G. Fan, and W. Zhang: Mater. Charact, 2011, vol. 62, pp. 198–203.

    Article  Google Scholar 

  3. E. Evangelista, H.J. McQueen, M. Niewczas, and M. Cabibbo: Can. Metall. Q., 2004, vol. 43, pp. 339–54.

    Article  Google Scholar 

  4. G.W. Fan, J. Liu, P.D. Han, and G.J. Qiao: Mater. Sci. Eng. A, 2009, vol. 515, pp. 108–12.

    Article  Google Scholar 

  5. H. Farnoush, A. Momeni, K. Dehgani, J. AghaZadeh Mohandesi, and H. Keshmiri: Mater. Des., 2010, vol. 31, pp. 220–26.

  6. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Mater. Sci. Technol., 2007, vol. 23, pp. 1478–84.

    Article  Google Scholar 

  7. A.M.J. Junior, G.S. Reis, and O. Balancin: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1259–64.

    Google Scholar 

  8. S. Primig, K.S. Ragger, and B. Buchmeyr: Mater. Sci. Forum, 2014, vols. 783–86, pp. 973–79.

    Article  Google Scholar 

  9. R.Z. Wang and T.C. Lei: Scripta Metall. Mater., 1994, vol. 31, pp. 1193–96.

    Article  Google Scholar 

  10. C. Herrera, D. Ponge, and D. Raabe: Steel Res. Int., 2008, vol. 79, pp. 482–88.

    Article  Google Scholar 

  11. C. Herrera, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 51, pp. 4653–64.

    Article  Google Scholar 

  12. A. Iza-Mendia, A. Pin-Ol-Juez, J.J. Urcola, and I. Gutie´rrez: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2975–86.

  13. O. Balancin, W.A.M. Hoffmann, and J.J. Jonas: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1353–64.

    Article  Google Scholar 

  14. A. Momeni and K. Dehghani: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1448–54.

    Article  Google Scholar 

  15. A. Momeni, K. Dehghani, and X.X. Zhang: J. Mater. Sci., 2012, vol. 47, pp. 2966–74.

    Article  Google Scholar 

  16. P. Cizek, B.P. Wyne, and W.M. Rainforth: J. Microsc., 2006, vol. 222, pp. 85–96.

    Article  Google Scholar 

  17. P. Cizek and B.P. Wyne: Mater. Sci. Eng. A, 1997, vol. 230, pp. 88–94.

    Article  Google Scholar 

  18. Y.L. Fang, Z.Y. Liu, W. Xue, H.M. Song, and L.Z. Jiang: Iron Steel Inst. Jpn. Int., 2010, vol. 50, pp. 286–93.

    Article  Google Scholar 

  19. Y. Liu, H. Yan, X. Wang, and M. Yan: Mater. Sci. Eng. A, 2013, vol. 575, pp. 41–47.

    Article  Google Scholar 

  20. D.N. Zou, K. Wu, Y. Han, W. Zhang, B. Cheng, and G.J. Qiao: Mater. Design, 2013, vol. 51, pp. 975–82.

    Article  Google Scholar 

  21. S. Patra, A. Ghosh, V. Kumar, D. Chakrabarti, and L.K. Singhal: Mater. Sci. Eng. A, 2016, vol. 660, pp. 61–70.

  22. A. Ghosh, S. Patra, A. Chatterjee, and D. Chakrabarti: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2755–72.

    Article  Google Scholar 

  23. J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin: Acta Mater., 2009, vol. 57, pp. 2748–56.

    Article  Google Scholar 

  24. L. Duprez, B.C. De Cooman, and N. Akdut: Metall. Mater. Trans. A, 2002, vol. 34A, pp. 1931–38.

    Article  Google Scholar 

  25. S. Kim and Y.C. Yoo: Met. Mater. Int., 2002, vol. 8, pp. 7–13.

    Article  Google Scholar 

  26. S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685–99.

    Article  Google Scholar 

  27. C. Herrera, D. Ponge, and D. Raabe: Proc. 3rd Int. Conf. on Thermo-Mechanical Processing of Steels, Padna, Italy, Sept. 10–12, 2008, http://edoc.mpg.de/377522.

  28. N. Tsuji, K. Tsuzaki, and T. Maki: ISIJ Int., 1993, vol. 33, pp. 783–92.

    Article  Google Scholar 

  29. N. Tsuji, K. Tsuzaki, and T. Maki: ISIJ Int., 1994, vol. 34, pp. 1008–17.

    Article  Google Scholar 

  30. A. Paggi, G. Angella, and R. Donnini: Mater. Charact., 2015, vol. 107, pp. 174–81.

    Article  Google Scholar 

  31. R.K. Ray and J.J. Jonas: Int. Mater. Rev., 1990, vol. 35, pp. 1–36.

    Article  Google Scholar 

  32. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, NY, 1995.

    Google Scholar 

  33. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, London, 1988.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the experimental support received from Jindal Stainless Limited, the Indian Institute of Technology Kharagpur, and the Steel Authority of India. They also sincerely appreciate the financial support of the Department of Science and Technology, New Delhi, and the SGDRI Grant received from SRIC, IIT Kharagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Patra.

Additional information

Manuscript submitted March 31, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, S., Ghosh, A., Singhal, L.K. et al. Hot Deformation Behavior of As-Cast 2101 Grade Lean Duplex Stainless Steel and the Associated Changes in Microstructure and Crystallographic Texture. Metall Mater Trans A 48, 294–313 (2017). https://doi.org/10.1007/s11661-016-3759-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3759-1

Keywords

Navigation