Skip to main content
Log in

Resistance Spot Welding of Quenching and Partitioning (Q&P) Third-Generation Advanced High-Strength Steel: Process–Microstructure–Performance

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper investigates process–microstructure–performance relationships in Q&P980 third-generation advanced high-strength steel (AHSS) resistance spot welds. The hardening and softening phenomena during welding are discussed in terms of weldment microstructure. The fusion zone (FZ) microstructure was mainly lath martensite with an average hardness of 500 HV due to the high cooling rate resulting from resistance spot welding. No significant softening was observed in the sub-critical heat-affected zone which was related mainly to the presence of the low volume fraction of fresh martensite in the initial microstructure of the base metal. The factors controlling the tensile–shear peak load, failure energy, and failure mode transition of Q&P980 resistance spot welds are discussed. The assessment of the tensile–shear peak load of the welds failed in the IF mode verified that interfacial failure strength is governed by FZ hardness rather than FZ fracture toughness. In the case of pullout failure, two competing failure mechanisms were identified: (i) ductile cracking from the notch tip and (ii) through-thickness localized necking, with the former was found to be the dominant failure mechanism for the Q&P980 steel resistance spot welds. The high susceptibility of the Q&P980 resistance spot welds to interfacial mode was due to its low hardening ratio, lack of significant softening in the HAZ, and its propensity to shrinkage void formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.Y. Demeri: Advanced High-Strength Steels: Science, Technology, and Applications, ASM International, Materials Park, 2013.

    Book  Google Scholar 

  2. E. Billur: Hot Stamping of Ultra High-Strength Steels. From a Technological and Business Perspective, Springer, Cham, 2019.

    Book  Google Scholar 

  3. M. Tisza: Lect. Notes Mech. Eng., 2021, vol. 22, pp. 81–94.

    Article  Google Scholar 

  4. J.G. Speer, E. De Moor, K.O. Findley, D.K. Matlock, and B.C. De Cooman: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3591–3601.

    Article  Google Scholar 

  5. L. Wang and J.G. Speer: Metallogr. Microstruct. Anal., 2013, vol. 2, pp. 268–81.

    Article  Google Scholar 

  6. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Article  CAS  Google Scholar 

  7. E.J. Seo, L. Cho, and B.C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3797–3802.

    Article  Google Scholar 

  8. E. de Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2586–95.

    Article  CAS  Google Scholar 

  9. M. Pouranvari and S.P.H. Marashi: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 361–403.

    Article  CAS  Google Scholar 

  10. M. Pouranvari, H.R. Asgari, S.M. Mosavizadch, and P.H. Marashi: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 217–25.

    Article  Google Scholar 

  11. B. Wang, Q.Q. Duan, G. Yao, J.C. Pang, X.W. Li, L. Wang, and Z.F. Zhang: Int. J. Fatigue., 2014, vol. 66, pp. 20–28.

    Article  CAS  Google Scholar 

  12. T. Chen, Z. Ling, M. Wang, and L. Kong: Mater. Sci. Eng. A, 2022, vol. 831, 142164.

    Article  CAS  Google Scholar 

  13. T. Chen, Z. Ling, M. Wang, and L. Kong: J. Mater. Process. Technol., 2020, vol. 285, 116797.

    Article  CAS  Google Scholar 

  14. B. Figueredo, D.C. Ramachandran, A. Macwan, and E. Biro: Weld. World., 2021, vol. 65, pp. 2359–69.

    Article  Google Scholar 

  15. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, and J. Sietsma: Acta Mater., 2011, vol. 59, pp. 6059–6068.

    Article  CAS  Google Scholar 

  16. B.C. De Cooman, J.G. Speer, and M. Trip: Steel Res. Int., 2006, vol. 77, pp. 634–40.

    Article  Google Scholar 

  17. F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia: Acta Mater., 2016, vol. 104, pp. 72–83.

    Article  CAS  Google Scholar 

  18. K.E. Easterling: Mathematical Modelling of Weld Phenomena, eds. H. Cerjak, K.E. Easterling, The Institute of Materials, London. 1993, pp. 183–200.

  19. J.E. Gould, S.P. Khurana, and T. Li: Weld. J., 2006, vol. 85, pp. 111s–116s.

    Google Scholar 

  20. M. Pouranvari and S.P.H. Marashi: Mater. Sci. Technol., 2009, vol. 25, pp. 1411–16.

    Article  CAS  Google Scholar 

  21. M. Pouranvari and S.P.H. Marashi: Ironmak. Steelmak., 2012, vol. 39, pp. 104–11.

    Article  CAS  Google Scholar 

  22. M. Pouranvari, S.P.H. Marashi, and D.S. Safanama: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8344–52.

    Article  CAS  Google Scholar 

  23. M. Pouranvari: Can. Metall. Q., 2012, vol. 51, pp. 67–74.

    Article  CAS  Google Scholar 

  24. M.S. Khan, S.D. Bhole, D.L. Chen, E. Biro, G. Boudreau, and J. Van Deventer: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 616–25.

    Article  CAS  Google Scholar 

  25. S. Brauser, L.A. Pepke, G. Weber, and M. Rethmeier: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7099–7108.

    Article  Google Scholar 

  26. I.A. Soomro and S.R. Pedapati: Int. J. Adv. Manuf. Technol., 2019, vol. 105, pp. 3249–60.

    Article  Google Scholar 

  27. X. Long and S.K. Khanna: Int. J. Fatigue, 2007, vol. 29, pp. 879–86.

    Article  CAS  Google Scholar 

  28. M. Pouranvari and S.P.H. Marashi: Sci. Technol. Weld. Join, 2010, vol. 15, pp. 149–55.

    Article  CAS  Google Scholar 

  29. C. Ma, D.L. Chen, S.D. Bhole, G. Boudreau, A. Lee, and E. Biro: Mater. Sci. Eng. A, 2008, vol. 485, pp. 334–46.

    Article  Google Scholar 

  30. A. Ramazani, K. Mukherjee, A. Abdurakhmanov, M. Abbasi, and U. Prahl: Metals (Basel)., 2015, vol. 5, pp. 1704–16.

    Article  Google Scholar 

  31. H. Rezayat: The Role of Heterogeneous Constitutive Properties on Mechanical Behavior of Advanced High Strength Steel Spot Welds, PhD Dissertation, University of Tennessee, 2019.

  32. V. Hernandez: Effects of Martensite Tempering on HAZ-Softening and Tensile Properties of Resistance Spot Welded Dual-Phase Steels, PhD Thesis, University of Waterloo, 2010.

  33. M. Khan: Spot welding of advanced high strength steels (AHSS), Master Thesis, University of Waterloo, 2007.

  34. M.M.H. Abadi and M. Pouranvari: Mater. Tehnol., 2014, vol. 48, pp. 67–71.

    CAS  Google Scholar 

  35. Y.S. Zhang, H.T. Sun, G.L. Chen, and X.M. Lai: Proc. Inst. Mech. Eng. Part B, 2009, vol. 223, pp. 1341–50.

    Article  Google Scholar 

  36. R. Koganti, S. Angotti, A. Wexler, and D.F. Maatz: SAE Tech. Pap., No. 2008-01-1113, 2008.

  37. J. Pakkanen, R. Vallant, and M. Kičin: Weld. World., 2016, vol. 60, pp. 393–402.

    Article  CAS  Google Scholar 

  38. L. Prém, Z. Bézi, and A. Balogh: Adv. Mater. Res., 2016, vol. 1138, pp. 43–48.

    Article  Google Scholar 

  39. R. Koganti, S. Angotti, A. Joaquin, T. Coon, A. Wexler, and C. Orsette: SAE Tech. Pap, No. 2009-01-0805, 2009.

  40. S. Dancette, D. Fabrègue, V. Massardier, J. Merlin, T. Dupuy, and M. Bouzekri: Eng. Fail. Anal., 2012, vol. 25, pp. 112–22.

    Article  CAS  Google Scholar 

  41. H. Wu, B. Zhao, H. Gao, Z.B. Zhao, and C. Liu: Appl. Mech. Mater., 2015, vol. 789–790, pp. 15–19.

    Article  Google Scholar 

  42. V.H.B. Hernandez, Y. Okita, and Y. Zhou: Weld. J., 2012, vol. 91, pp. 278s–285s.

    Google Scholar 

  43. H. ErtekEmre and B. Bozkurt: Eng. Fail. Anal., 2020, vol. 110, p. 104439.

    Article  CAS  Google Scholar 

  44. S. Ao, H. Shan, X. Cui, Z. Luo, Y.J. Chao, and M. Ma: Weld. World., 2016, vol. 60, pp. 1095–1107.

    Article  CAS  Google Scholar 

  45. K. Chung, W. Noh, X. Yang, H.N. Han, and M.G. Lee: Int. J. Plast., 2017, vol. 94, pp. 122–47.

    Article  CAS  Google Scholar 

  46. S.T. Wei, D. Lv, R.D. Liu, L. Lin, R.J. Xu, J.Y. Guo, and K.Q. Wang: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 427–35.

    Article  CAS  Google Scholar 

  47. S. Zhang, C. DiGiovanni, L. He, and N.Y. Zhou: Sci. Technol. Weld. Join., 2020, vol. 26, pp. 58–67.

    Article  Google Scholar 

  48. I. Hajiannia, M. Shamanian, M. Atapour, R. Ashiri, and S.A.E. Int: J. Mater. Manuf., 2018, vol. 12, pp. 4–18.

    Google Scholar 

  49. M. Shojaee, A.R.H. Midawi, B. Barber, H. Ghassemi-armaki, M. Worswick, and E. Biro: J. Manuf. Process., 2021, vol. 65, pp. 364–72.

    Article  Google Scholar 

  50. X.D. Liu, Y.B. Xu, R.D.K. Misra, F. Peng, Y. Wang, and Y.B. Du: J. Mater. Process. Technol., 2019, vol. 263, pp. 186–97.

    Article  CAS  Google Scholar 

  51. C. Luo and Y. Zhang: In MATEC Web Conf., 2019, vol. 269, p. 03002. EDP Sciences.

  52. M. Pouranvari, S. Sobhani, and F. Goodarzi: J. Manuf. Process., 2018, vol. 31, pp. 867–74.

    Article  Google Scholar 

  53. M. Tamizi, M. Pouranvari, and M. Movahedi: Sci. Technol. Weld. Join., 2017, vol. 22, pp. 327–35.

    Article  CAS  Google Scholar 

  54. Y. Li, H. Tang, and R. Lai: Processes, 2021, vol. 9, p. 1021.

    Article  CAS  Google Scholar 

  55. H. Ghassemi-Armaki, E. Biro, and S. Sadagopan: ISIJ Int., 2017, vol. 57, pp. 1451–60.

    Article  CAS  Google Scholar 

  56. J.K. Larsson: In proceeding of EUROJOIN 8., 2012, Pula, Croatia.

  57. N. Tan, J. Hong, M. Lei, X. Jin, H. Zheng, and Z. Luo: Sci. Technol. Weld. Join., 2020, vol. 25, pp. 525–34.

    Article  CAS  Google Scholar 

  58. Y. Lu, A. Peer, T. Abke, M. Kimchi, and W. Zhang: Mater. Des., 2018, vol. 155, pp. 170–84.

    Article  CAS  Google Scholar 

  59. Y.S. Jong, Y.K. Lee, D.C. Kim, M.J. Kang, I.S. Hwang, and W.B. Lee: Mater. Trans., 2011, vol. 52, pp. 1330–33.

    Article  CAS  Google Scholar 

  60. G. Janardhan, G. Mukhopadhyay, K. Kishore, and K. Dutta: J. Mater. Eng. Perform., 2020, vol. 29, pp. 3383–94.

    Article  CAS  Google Scholar 

  61. A. Mohamadizadeh, E. Biro, and M. Worswick: Eng. Fract. Mech., 2022, vol. 268, 108506.

    Article  Google Scholar 

  62. S. Acharya and K.K. Ray: Mater. Sci. Eng. A, 2013, vol. 565, pp. 405–13.

    Article  CAS  Google Scholar 

  63. S.S. Rao, R. Chhibber, K.S. Arora, and M. Shome: J. Mater. Process. Technol., 2017, vol. 246, pp. 252–61.

    Article  CAS  Google Scholar 

  64. G. Mukhopadhyay, S. Bhattacharya, and K.K. Ray: Mater. Des., 2009, vol. 30, pp. 2345–54.

    Article  CAS  Google Scholar 

  65. U. Ozsarac: J. Mater. Eng. Perform., 2012, vol. 21, pp. 748–55.

    Article  CAS  Google Scholar 

  66. D.C. Saha, S.S. Nayak, E. Biro, A.P. Gerlich, and Y. Zhou: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 6153–62.

    Article  Google Scholar 

  67. M. Shamsujjoha, C.M. Enloe, A.C. Chuang, and J.J. Coryell: Materialia, 2020, vol. 15, 100975.

    Article  Google Scholar 

  68. M. Tamizi, M. Pouranvari, and M. Movahedi: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 655–67.

    Article  Google Scholar 

  69. M.I. Khan, M.L. Kuntz, and Y. Zhou: Sci. Technol. Weld. Join., 2008, vol. 13, pp. 294–304.

    Article  CAS  Google Scholar 

  70. M. Xia, E. Biro, Z. Tian, and Y.N. Zhou: ISIJ Int., 2008, vol. 48, pp. 809–14.

    Article  CAS  Google Scholar 

  71. I.O. Yilmaz, A.Y. Bilici, and H. Aydin: J. Cent. South Univ., 2019, vol. 26, pp. 25–42.

    Article  Google Scholar 

  72. S. Dancette, V. Massardier-Jourdan, D. Fabrègue, J. Merlin, T. Dupuy, and M. Bouzekri: ISIJ Int., 2011, vol. 51, pp. 99–107.

    Article  CAS  Google Scholar 

  73. H. Rezayat, H. Ghassemi-armaki, and S.S. Babu, In proceedings of Trends in Welding Research, Proceedings of the 10th International Conference, Tokyo, Japan, 2016.

  74. C. Rajarajan, P. Sivaraj, and V. Balasubramanian: Mater. Res. Express., 2020, vol. 7, 016555.

    Article  CAS  Google Scholar 

  75. F. Nikoosohbat, S. Kheirandish, M. Goodarzi, M. Pouranvari, and S.P.H. Marashi: Mater. Sci. Technol., 2010, vol. 26, pp. 738–44.

    Article  CAS  Google Scholar 

  76. W. Guo, Z. Wan, P. Peng, Q. Jia, G. Zou, and Y. Peng: J. Mater. Process. Tech., 2018, vol. 256, pp. 229–38.

    Article  CAS  Google Scholar 

  77. W. Li, L. Ma, P. Peng, Q. Jia, Z. Wan, Y. Zhu, and W. Guo: Mater. Sci. Eng. A, 2018, vol. 717, pp. 124–33.

    Article  CAS  Google Scholar 

  78. D. Chandran, B. Figueredo, O. Sherepenko, W. Jin, Y. Park, and E. Biro: J. Manuf. Process., 2022, vol. 75, pp. 320–30.

    Article  Google Scholar 

  79. O. Sherepenko and S. Jüttner: Weld. World, 2019, vol. 63, pp. 151–59.

    Article  CAS  Google Scholar 

  80. O. Sherepenko, A. Mohamadizadeh, A. Zvorykina, M. Worswick, E. Biro, and S. Jüttner: J. Mater. Sci., 2021, vol. 56, pp. 14287–97.

    Article  CAS  Google Scholar 

  81. O. Sherepenko, O. Kazemi, P. Rosemann, M. Wilke, T. Halle, and S. Jüttner: Metals, 2019, vol. 10, p. 10.

    Article  Google Scholar 

  82. Y. Zhang, W. Xu, G. Zhang, W. Tao, and S. Yang: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 794–809.

    Article  Google Scholar 

  83. Y.B. Li, D.L. Li, S.A. David, Y.C. Lim, and Z. Feng: Sci. Technol. Weld. Join., 2016, vol. 21, pp. 555–63.

    Article  CAS  Google Scholar 

  84. D.S. Safanama, S.P.H. Marashi, and M. Pouranvari: Sci. Technol. Weld. Join., 2012, vol. 17, pp. 288–94.

    Article  CAS  Google Scholar 

  85. M. Pouranvari and S.P.H. Marashi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8337–43.

    Article  CAS  Google Scholar 

  86. A.G. Kalashami, C. Digiovanni, M.H. Razmpoosh, F. Goodwin, and N.Y. Zhou: J. Manuf. Process., 2020, vol. 57, pp. 370–79.

    Article  Google Scholar 

  87. ANSI/AWS/SAE Standard D8.9-97.

  88. JIS Z 3140, japanese Ind. Stand. Committee, Tokyo, Japan.

  89. D.J. Radakovic and M. Tumuluru: Weld. J., 2008, vol. 87, pp. 96–105.

    Google Scholar 

  90. M. Pouranvari: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 520–26.

    Article  CAS  Google Scholar 

  91. M. Pouranvari: Mater. Sci. Eng. A, 2012, vol. 546, pp. 129–38.

    Article  CAS  Google Scholar 

  92. S. Zhang: Int. J. Fract., 1997, vol. 88, pp. 167–85.

    Article  Google Scholar 

  93. D. Radaj: Design and Analysis of Fatigue Resistant Welded Structures, Woodhead Publishing, Abington, 1990.

    Book  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Pouranvari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadimi, N., Yadegari, R. & Pouranvari, M. Resistance Spot Welding of Quenching and Partitioning (Q&P) Third-Generation Advanced High-Strength Steel: Process–Microstructure–Performance. Metall Mater Trans A 54, 577–589 (2023). https://doi.org/10.1007/s11661-022-06903-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06903-y

Navigation