Skip to main content
Log in

Mechanical Behavior and Failure Mechanism of Q&P980 Steel During In Situ Post-Weld Heat Treatment (PWHT) Resistance Spot Welding

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure evolution of Q&P 980 steel resistance spot welds under two different welding conditions, i.e., single pulse and dual pulse, and the influence of the welding process on the mechanical strength and fracture behavior of welds were investigated. The welds had a softening zone inside the subcritical heat-affected zone (SC-HAZ) for both welding conditions. Moreover, a Mn-free zone (approximately 20 μm in width) leading to the formation of a banded bainite microstructure with a lower microhardness between the fusion zone (FZ) and the HAZ was observed, causing cracks to initiate under single pulse welding. Compared to the single pulse process, the dual pulse process with a suitable secondary current and an in situ post-weld heat treatment effect leads to an enhancement in tensile-shear and cross-tensile mechanical properties. By establishing the relationship between the microstructure of the failure path, including the FZ, Mn-free zone, and HAZ, and the mechanical properties, the mechanism of mechanical property improvement was revealed. After introducing the post-weld current, three strengthening mechanisms for the FZ were observed, i.e., tempered martensite, refined martensite, and remelted nugget. Moreover, in situ pulse welding caused a new softening phenomenon in the HAZ and led to the transformation of the banded bainite into martensite in the Mn-free zone, causing changes in the fracture mode and improvement in the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Article  CAS  Google Scholar 

  2. M. Pouranvari: World Appl. Sci. J., 2011, vol. 15, pp. 1454–8.

    CAS  Google Scholar 

  3. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–31.

    Article  CAS  Google Scholar 

  4. D. Shirmohammadi, M. Movahedi, and M. Pouranvari: Mater. Sci. Eng. A., 2017, vol. 703, pp. 154–61.

    Article  CAS  Google Scholar 

  5. M. Mimer, L.E. Svensson, and R. Johansson: Weld. World., 2004, vol. 48, pp. 14–8.

    Article  Google Scholar 

  6. C. Wakabayashi, S. Furusako, and Y. Miyazaki: Sci. Technol. Weld. Join., 2015, vol. 20, pp. 468–72.

    Article  CAS  Google Scholar 

  7. A. Chabok, E. van der Aa, J.T.M. De Hosson, and Y.T. Pei: Mater. Des., 2017, vol. 124, pp. 171–82.

    Article  CAS  Google Scholar 

  8. C. Sawanishi, T. Ogura, K. Taniguchi, R. Ikeda, K. Oi, K. Yasuda, and A. Hirose: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 52–9.

    Article  CAS  Google Scholar 

  9. V.H.B. Hernandez, Y. Okita, and Y. Zhou: Weld. J., 2012, vol. 91, pp. 278–85.

    Google Scholar 

  10. P. Eftekharimilani, E.M. van der Aa, M.J.M. Hermans, and I.M. Richardson: Sci. Technol. Weld. Join., 2017, vol. 22, pp. 545–54.

    Article  CAS  Google Scholar 

  11. X.D. Liu, Y.B. Xu, R.D.K. Misra, F. Peng, Y. Wang, and Y.B. Du: J. Mater. Process. Technol., 2019, vol. 263, pp. 186–97.

    Article  CAS  Google Scholar 

  12. B. Wang, Q.Q. Duan, G. Yao, J.C. Pang, X.W. Li, L. Wang, and Z.F. Zhang: Int. J. Fatigue., 2014, vol. 66, pp. 20–8.

    Article  CAS  Google Scholar 

  13. C.L. Fan, B.H. Ma, D.N. Chen, H.R. Wang, and D.F. Ma: Chin. Phys. Lett., 2016, vol. 33, pp. 3–8.

    Google Scholar 

  14. W. Li, L. Ma, P. Peng, Q. Jia, Z. Wan, Y. Zhu, and W. Guo: Mater. Sci. Eng. A., 2018, vol. 717, pp. 124–33.

    Article  CAS  Google Scholar 

  15. M. Pouranvari and S.P.H. Marashi: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 361–403.

    Article  CAS  Google Scholar 

  16. J.E. Gould, S.P. Khurana, and T. Li: Weld. J., 2006, vol. 85, pp. 111–6.

    Google Scholar 

  17. M. Amirthalingam, E.M. van der Aa, C. Kwakernaak, M.J.M. Hermans, and I.M. Richardson: Weld. World., 2015, vol. 59, pp. 743–55.

    Article  CAS  Google Scholar 

  18. M. Pouranvari: Mater. Sci. Eng. A., 2012, vol. 546, pp. 129–38.

    Article  CAS  Google Scholar 

  19. X. Liao, X. Wang, Z. Guo, M. Wang, Y. Wu, and Y. Rong: Mater. Charact., 2010, vol. 61, pp. 341–6.

    Article  CAS  Google Scholar 

  20. I. Madariaga and I. Gutiérrez: Acta Mater., 1999, vol. 47, pp. 951–60.

    Article  CAS  Google Scholar 

  21. S. Sajjadi-Nikoo, M. Pouranvari, A. Abedi, and A.A. Ghaderi: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 71–8.

    Article  CAS  Google Scholar 

  22. P. Eftekharimilani, E.M. van der Aa, M.J.M. Hermans, and I.M. Richardson: Weld. World., 2017, vol. 61, pp. 691–701.

    Article  CAS  Google Scholar 

  23. J. Hidalgo and M.J. Santofimia: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 5288–301.

    Article  Google Scholar 

  24. Z. Guo, C.S. Lee, and J.W. Morris: Acta Mater., 2004, vol. 52, pp. 5511–8.

    Article  CAS  Google Scholar 

  25. J.J. Jonas: Mater. Sci. Forum., 2013, vol. 753, pp. 546–53.

    Article  Google Scholar 

  26. Y. You, C. Shang, N. Wenjin, and S. Subramanian: Mater. Sci. Eng. A., 2012, vol. 558, pp. 692–701.

    Article  CAS  Google Scholar 

  27. S. Li, S. Yang, Q. Lu, H. Luo, and W. Tao: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1–9. https://doi.org/10.1007/s11663-018-1463-9.

    Article  CAS  Google Scholar 

  28. H. Zhang, X. Qiu, F. Xing, J. Bai, and J. Chen: Mater. Des., 2014, vol. 55, pp. 366–72.

    Article  CAS  Google Scholar 

  29. R.W. Rathbun, D.K. Matlock, and J.G. Speer: Weld. J., 2003, vol. 82, pp. 207–18.

    Google Scholar 

Download references

Acknowledgments

This work was supported by The State Key Laboratory of Rolling and Automation (No. 2018RALKFKT009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xu or Shanglu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 10, 2021; accepted November 8, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, W., Zhang, G. et al. Mechanical Behavior and Failure Mechanism of Q&P980 Steel During In Situ Post-Weld Heat Treatment (PWHT) Resistance Spot Welding. Metall Mater Trans A 53, 794–809 (2022). https://doi.org/10.1007/s11661-021-06546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06546-5

Navigation