Skip to main content
Log in

A Quantitative Study of Microsegregation in Aluminum–Copper Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study quantitatively investigated the effects of a wide variety of solidification process conditions on the microsegregation behavior of Al–Cu binary and multi-component alloys. Quantitative measurements of microsegregation were conducted using electron probe micro-analysis (EPMA). The EPMA results systematically demonstrated the influences of solidification cooling rates and thermal gradients on the microsegregation behavior in these Al–Cu alloys. The effects of the cooling rate on the microstructure and volume fraction of eutectic phase were also quantitatively characterized. A comprehensive micro-model for microsegregation, which considers solid diffusion, non-equilibrium parameters, constitutional undercooling at the dendrite tip, and dendrite remelting during dendrite formation was applied to predict the microsegregation behavior over a wide range of cooling rates. The comprehensive micro-model is analytical, simple to implement and accurately predicts the microsegregation behavior in Al–Cu binary and multi-component alloys during both columnar and equiaxed dendritic solidification for a wide range of solidification conditions from laser surface remelting to near equilibrium conditions represented by equiaxed dendrites in thick cast sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.M. Stefanescu: Science and Engineering of Casting Solidification, 3rd ed. Springer, New York, 2015.

    Book  Google Scholar 

  2. J.A. Sarreal and G.J. Abbaschian: Metall. Trans. A, 1986, vol. 17, pp. 2063–73.

    Article  Google Scholar 

  3. J.F. Grandfield, D.G. Eskin, and I.F. Bainbridge: Direct-Chill Casting of Light Alloys, Wiley, Hoboken, 2013.

    Book  Google Scholar 

  4. Q. Du, D.G. Eskin, A. Jacot, and L. Katgerman: Acta Mater., 2007, vol. 55, pp. 1523–32.

    Article  CAS  Google Scholar 

  5. G. Kasperovich, T. Volkmann, L. Ratke, and D. Herlach: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1183–91.

    Article  CAS  Google Scholar 

  6. M. Ganesan, L. Thuinet, D. Dye, and P.D. Lee: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 557–66.

    Article  CAS  Google Scholar 

  7. T.D. Berman, Z. Yao, E. Deda, L. Godlewski, M. Li, and J.E. Allison: Metall. Mater. Trans. A, 2022.

  8. T.D. Berman, M. Li, and J.E. Allison: Magnes. Technol., 2017, vol. 2017, pp. 73–78.

    Google Scholar 

  9. X. Yan, S. Chen, F. Xie, and Y.A. Chang: Acta Mater., 2002, vol. 50, pp. 2199–2207.

    Article  CAS  Google Scholar 

  10. M. Ohno, M. Yamashita, and K. Matsuura: Int. J. Heat Mass Transf., 2019, vol. 132, p. 1004.

    Article  CAS  Google Scholar 

  11. A. Mortensen: Metall. Trans. A, 1989, vol. 20, pp. 247–53.

    Article  Google Scholar 

  12. V.R. Voller and C. Beckermann: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3016–19.

    Article  CAS  Google Scholar 

  13. V.R. Voller and C. Beckermann: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2183–89.

    Article  CAS  Google Scholar 

  14. Y.M. Won and B.G. Thomas: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1755–67.

    Article  CAS  Google Scholar 

  15. R.-J. Su, R.A. Overfelt, and W.A. Jemian: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2375–81.

    Article  CAS  Google Scholar 

  16. I.L. Ferreira, C.A. Santos, A. Garcia, and V.R. Voller: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 285–97.

    Article  CAS  Google Scholar 

  17. M. Flemings, D. Poirier, R. Barone, and H.D. Brody: J. Iron Steel Inst. (Lond.), 1970, vol. 208, pp. 371–81.

    CAS  Google Scholar 

  18. M.N. Gungor: Metall. Trans. A, 1989, vol. 20, pp. 2529–33.

    Article  Google Scholar 

  19. M. Ganesan, D. Dye, and P.D. Lee: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2191–2204.

    Article  CAS  Google Scholar 

  20. Z. Yao, W. Ren, and J.E. Allison: Available at Research Square with https://doi.org/10.21203/rs.3.rs-1002008/v1.

  21. Z. Yao, D. Montiel, K. Thornton, and J.E. Allison: Metall. Mater. Trans. A, 2022.

  22. T.M. Pollock, J.E. Allison, and D.G. Backman: Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security, National Academies Press, Washington, DC, 2008.

    Google Scholar 

  23. E. Scheil: Z. Metallkde, 1942, vol. 34, pp. 70–72.

    Google Scholar 

  24. H.D. Brody and M.C. Flemings: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 615–24.

    CAS  Google Scholar 

  25. T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965–71.

    Article  Google Scholar 

  26. B. Giovanola and W. Kurz: Metall. Trans. A, 1990, vol. 21, pp. 260–63.

    Article  Google Scholar 

  27. M.J. Aziz: J. Appl. Phys., 1982, vol. 53, pp. 1158–68.

    Article  CAS  Google Scholar 

  28. Y.-J. Liang, X. Cheng, and H.-M. Wang: Acta Mater., 2016, vol. 118, pp. 17–27.

    Article  CAS  Google Scholar 

  29. Q. Shi, T.D. Berman, and J.E. Allison: Coupling Experiment and Simulation to Predict Microstructural Evolution and Yield Strength for Age-hardened Aluminum Alloys: Part I. Developing an ICME Methodology for a Casting Alloy, University of Michigan, 2021.

  30. MAGMASOFT®—Simulation and virtual optimization casting process. https://www.magmasoft.com/en/. Accessed 2020.

  31. JMATPRO®. Accessed 2020.

  32. K.P. Young and D.H. Kerkwood: Metall. Trans. A, 1975, vol. 6, pp. 197–205.

    Article  CAS  Google Scholar 

  33. PanAluminum Pandat database. Thermodynamic database for multi-component Aluminum-rich casting and wrought alloys. Accessed 2020.

  34. Z.K. Liu and Y.A. Chang: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1081–95.

    Article  CAS  Google Scholar 

  35. A.T. Dinsdale: CALPHAD, 1991, vol. 15, pp. 317–425.

    Article  CAS  Google Scholar 

  36. W. Kurz, B. Giovanola, and R. Trivedi: Acta Metall., 1986, vol. 34, pp. 823–30.

    Article  CAS  Google Scholar 

  37. P.M. Smith and M.J. Aziz: Acta Metall. Mater., 1994, vol. 42, pp. 3515–25.

    Article  CAS  Google Scholar 

  38. G. Horvay and J. Cahn: Acta Metall., 1961, vol. 9, pp. 695–705.

    Article  CAS  Google Scholar 

  39. K.A. Jackson and J.D. Hunt: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 1129–42.

    CAS  Google Scholar 

  40. Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F.Y. Xie: Mater. Sci. Eng. A, 2003, vol. 363, pp. 140–51.

    Article  Google Scholar 

Download references

Conflict of interest

ZY and JA acknowledge financial assistance from Ford Motor Co. We are grateful for the assistance of Larry Godlewski in preparing the cast plates. The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjie Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of the Comprehensive Microsegregation Model

Appendix: Derivation of the Comprehensive Microsegregation Model

The solute balance in a fixed-size domain should follows that the sum of the solute in the solid and liquid phase should be the total solute presents. Therefore, the solute balance equation can be written as

$${\int }_{0}^{{X}_{\mathrm{s}}}{C}_{\mathrm{s}}dX+{\int }_{{X}_{\mathrm{s}}}^{{{\lambda }_{\mathrm{f}}}/ {2}}{C}_{\mathrm{l}}dX={C}_{0},$$
(A1)

where \({C}_{\mathrm{s}}\), \({C}_{\mathrm{l}}\) and \({C}_{0}\) is the concentration in solid phase, liquid phase and total concentration respectively, \({X}_{\mathrm{s}}\) is the size of the solid phase, and \({\lambda }_{\mathrm{f}}\) is the final SDAS. If a perfect mixing in the liquid is assume, that is the \({C}_{\mathrm{l}}\) is constant in the liquid phase, Eq. [A1] can be written as

$${\int }_{0}^{{X}_{\mathrm{s}}}{C}_{\mathrm{s}}dX+\left(\frac{{\lambda }_{\mathrm{f}}}{2}-{X}_{\mathrm{s}}\right){C}_{\mathrm{l}}^{*}={C}_{0}.$$
(A2)

Differentiate Eq. [A2] with respect to time and

$${\int }_{0}^{{X}_{\mathrm{s}}}\frac{\partial {C}_{\mathrm{s}}}{\partial t}dX+{C}_{\mathrm{s}}^{*}\frac{\mathrm{d}{X}_{\mathrm{s}}}{\mathrm{d}t}+\left(\frac{{\lambda }_{\mathrm{f}}}{2}-{X}_{\mathrm{s}}\right)\frac{\mathrm{d}{C}_{\mathrm{l}}^{*}}{\mathrm{d}t}-{C}_{\mathrm{l}}^{*}\frac{\mathrm{d}{X}_{\mathrm{s}}}{\mathrm{d}t}=0.$$
(A3)

Assume local equilibrium at the interface and Fick’s diffusion is the mechanisms for solute diffusion, the Eq. [A3] can be written as

$${\int }_{0}^{{X}_{\mathrm{s}}}{D}_{\mathrm{s}}\frac{{\partial }^{2}{C}_{\mathrm{s}}}{\partial {X}^{2}}dX-(1-k){C}_{\mathrm{l}}^{*}\frac{\mathrm{d}{X}_{\mathrm{s}}}{\mathrm{d}t}+\left(\frac{{\lambda }_{\mathrm{f}}}{2}-{X}_{\mathrm{s}}\right)\frac{\mathrm{d}{C}_{\mathrm{l}}^{*}}{\mathrm{d}t}=0.$$
(A4)

Rearrange Eq. [A4] and get

$$\left(1-k\right){C}_{\mathrm{l}}^{*}\frac{\mathrm{d}{X}_{\mathrm{s}}}{\mathrm{d}t}={D}_{\mathrm{s}}\frac{\partial {C}_{\mathrm{s}}^{*}}{\partial X}+\left(\frac{{\lambda }_{\mathrm{f}}}{2}-{X}_{\mathrm{s}}\right)\frac{\mathrm{d}{C}_{\mathrm{l}}^{*}}{\mathrm{d}t}.$$
(A5)

Assume the chain rule and local equilibrium, and therefore

$$\frac{\partial {C}_{\mathrm{s}}^{*}}{\partial {X}_{\mathrm{s}}}\cong k\frac{\partial {C}_{\mathrm{l}}^{*}}{\partial {X}_{\mathrm{s}}}.$$
(A6)

Substitute Eq. [A6] in [A5] and get

$$\left(1-k\right){C}_{\mathrm{l}}^{*}\frac{\mathrm{d}{X}_{\mathrm{s}}}{\mathrm{d}t}={D}_{\mathrm{s}}k\frac{\partial {C}_{\mathrm{l}}^{*}}{\partial {X}_{\mathrm{s}}}+\left(\frac{{\lambda }_{\mathrm{f}}}{2}-{X}_{\mathrm{s}}\right)\frac{\mathrm{d}{C}_{\mathrm{l}}^{*}}{\mathrm{d}t}.$$
(A7)

Assume a parabolic growth of solid vs. time, which is

$${X}_{\mathrm{s}}=\frac{{\lambda }_{\mathrm{f}}}{2}\sqrt{\frac{t}{{t}_{\mathrm{f}}}} \underset{}{\Rightarrow } \frac{\mathrm{d}{X}_{\mathrm{s}}}{\mathrm{d}t}=\frac{{\lambda }_{\mathrm{f}}^{2}}{8{t}_{\mathrm{f}}{X}_{\mathrm{s}}}.$$
(A8)

Substitute Eq. [A8] in [A7] and get

$$\left(1-k\right){C}_{\mathrm{l}}^{*}\frac{\mathrm{d}{X}_{\mathrm{s}}}{\mathrm{d}t}={D}_{\mathrm{s}}k\frac{8{t}_{\mathrm{f}}{X}_{\mathrm{s}}}{{\lambda }_{\mathrm{f}}^{2}}\frac{\partial {C}_{\mathrm{l}}^{*}}{\partial t}+\left(\frac{{\lambda }_{\mathrm{f}}}{2}-{X}_{\mathrm{s}}\right)\frac{\mathrm{d}{C}_{\mathrm{l}}^{*}}{\mathrm{d}t}.$$
(A9)

Since \({f}_{\mathrm{s}}={{X}_{\mathrm{s}}}/ {\frac{{\lambda }_{\mathrm{f}}}{2}}\), therefore the differential equation can be written in

$$\left(1-k\right){C}_{\mathrm{l}}^{*}\frac{{\lambda }_{\mathrm{f}}}{2}\frac{\mathrm{d}{f}_{\mathrm{s}}}{\mathrm{d}t}=\left[\left(2k\frac{4{{D}_{\mathrm{s}}t}_{\mathrm{f}}}{{\lambda }_{\mathrm{f}}^{2}}-1\right)+\frac{{\lambda }_{\mathrm{f}}}{2}\right]\frac{\partial {C}_{\mathrm{l}}^{*}}{\partial t}.$$
(A10)

The back diffusion coefficient can be represented by \(\alpha =\frac{4{{D}_{\mathrm{s}}t}_{\mathrm{f}}}{{\lambda }_{\mathrm{f}}^{2}}\), later the Clyne–Kurz proposed an empirical term that have a better solute conservation to replace \(\alpha \). The term back diffusion term \(\Omega \), which can be written as

$$\Omega =\alpha \left[1-\mathrm{exp}\left(-\frac{1}{\alpha }\right)\right]-\frac{1}{2}\mathrm{exp}\left(-\frac{1}{2\alpha }\right).$$
(A11)

The initial solid concentration in the Modified Clyne–Kurz should be

$${C}_{\mathrm{s},\mathrm{i}}^{*}={C}_{0}^{*}A=\frac{{C}_{0}^{*}}{\left[1-\left(1-{k}_{\mathrm{v}}\right)\mathrm{Iv}(Pe)\right]}.$$
(A12)

A partition coefficient is also considered, and therefore

$${k}_{\mathrm{v}}=\frac{{k}_{\mathrm{e}}+{a}_{0}v/{D}_{0}}{1+{a}_{0}v/{D}_{0}}.$$
(A13)

Integrate Eq. [A10] using results from [A11], [A12] and [A13], and the expression for Modified Clyne–Kurz is

$${C}_{\mathrm{s}}^{\boldsymbol{*}}=\frac{{C}_{0}^{*}{k}_{\mathrm{v}}}{\left[1-\left(1-{k}_{\mathrm{v}}\right)\mathrm{Iv}(Pe)\right]}{\left[1-\left(1-2{k}_{\mathrm{v}}\Omega \right){f}_{\mathrm{s}}\right]}^{{\left({k}_{\mathrm{v}}A-1\right)}/{\left(1-2{k}_{\mathrm{v}}\Omega \right)}}.$$
(A14)

In short, [A14] can be written as

$${C}_{\mathrm{s}}^{*}={k}_{\mathrm{v}}{AC}_{0}{\left(1-(1-{2{k}_{\mathrm{v}}A\Omega )f}_{\mathrm{s}}\right)}^{{{k}_{\mathrm{v}}A-1}/ {1-2{k}_{\mathrm{v}}A\Omega }}.$$
(A15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Huo, Y., Li, M. et al. A Quantitative Study of Microsegregation in Aluminum–Copper Alloys. Metall Mater Trans A 53, 2383–2401 (2022). https://doi.org/10.1007/s11661-022-06669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06669-3

Navigation