Skip to main content
Log in

Transient Stress Relaxation Test to Identify Material Constants in Dislocation Density Model

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 28 March 2022

This article has been updated

Abstract

The constitutive behavior of metallic materials in terms of dislocation kinetics can be successfully described using a dislocation density-based model. Although the kinetics of thermally activated plastic deformation is well described by such models, the number of material constants associated with the model leads to non-unique solution set. In the present work, transient stress relaxation test is used to identify rate-dependent material parameters. The stress relaxation test, when used in conjunction with stress–strain curve can reduce the uncertainty associated with parameter identification. The proposed methodology is demonstrated using aluminum alloys subjected to severe plastic deformation processes such as cryorolling and constrained groove pressing. Kocks–Mecking–Estrin (KME) dislocation density model is implemented as a user subroutine in commercial finite element analysis software. The parameter identification procedure is validated by comparing the experimental results of monotonic tensile and limiting dome height tests. Using dislocation density model, it is shown that unlike the general understanding, the limiting strain is not related to the strain hardening exponent. The limiting strain correlates only with the extent of dynamic recovery, a component of strain hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

Notes

  1. The immobile dislocation density changes with \(\sigma _i\). Since \(\sigma _i\) is almost constant, the variation of total dislocation density during stress relaxation is similar to that of mobile dislocation density.

References

  1. H.J. Kleemola and M.A. Nieminen: Metall. Trans., 1974, vol. 5, pp. 1863–66.

    Article  CAS  Google Scholar 

  2. S. Sudhy, K. Panicker, S. Prasad, S. Basak, and S.K. Panda: J. Mater. Eng. Perform., 2017, vol. 26, pp. 3954–69.

    Article  CAS  Google Scholar 

  3. E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127–36.

    Article  CAS  Google Scholar 

  4. E.W. Hart: J. Eng. Mater. Technol., 1976, vol. 98, pp. 193–202.

    Article  CAS  Google Scholar 

  5. J.C. Swearengen and R.W. Rhode: Metall. Trans. A., 1977, vol. 8, pp. 577–82.

    Article  Google Scholar 

  6. Y. Bergström, Y. Granbom, and D. Sterkenburg: J. Metall., 2010, vol. 2010, pp. 647198(1–16).

  7. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171–273.

    Article  CAS  Google Scholar 

  8. U.F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76–85.

    Article  CAS  Google Scholar 

  9. Y. Estrin: J. Mater. Process. Technol., 1998, vol. 80, pp. 33–9.

    Article  Google Scholar 

  10. Y. Estrin: in Unified Constitutive Laws of Plastic Deformation. A.S. Krausz and K. Krausz, eds., Academic Press, New York City, 1996, pp. 69–106.

    Chapter  Google Scholar 

  11. A. Vinogradov, E. Agletdinov, I.S. Yasnikov, K. Mathis, and Y. Estrin: Mater. Sci. Eng. A, 2020, vol. 780, pp. 139194(1–12).

  12. G.-H. Zhao, X. Xu, D. Dye, and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2020, vol. 183, pp. 155–64.

    Article  CAS  Google Scholar 

  13. N. Ueshima, K. Kubota, and K. Oikawa: Materialia, 2019, vol. 8, pp. 100464(1–9).

  14. C. Fressengeas, A.J. Beaudoin, M. Lebyodkin, L.P. Kubin, and Y. Estrin: Mater. Sci. Eng. A., 2005, vol. 400–401, pp. 226–30.

    Article  CAS  Google Scholar 

  15. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57–70.

    Article  Google Scholar 

  16. Y. Estrin, L.S. Tóth, A. Molinari, and Y. Bréchet: Acta Mater., 1998, vol. 46, pp. 5509–22.

    Article  CAS  Google Scholar 

  17. E.F. Rauch, J.J. Gracio, and F. Barlat: Acta Mater., 2007, vol. 55, pp. 2939–48.

    Article  CAS  Google Scholar 

  18. Y. Estrin, H. Braasch, and Y. Brechet: J. Eng. Mater. Technol., 1996, vol. 118, pp. 441–47.

    Article  CAS  Google Scholar 

  19. A. Prabhakar, G.C. Verma, H. Krishnasamy, P.M. Pandey, M.G. Lee, and S. Suwas: Mech. Res. Commun., 2017, vol. 85, pp. 76–80.

    Article  Google Scholar 

  20. B. Meng, B.N. Cao, M. Wan, C.J. Wang, and D.B. Shan: Int. J. Mech. Sci., 2019, vol. 157–158, pp. 609–18.

    Article  Google Scholar 

  21. Z. Yao, G.-Y. Kim, Z. Wang, L.A. Faidley, Q. Zou, D. Mei, and Z. Chen: Int. J. Plast., 2012, vol. 39, pp. 75–87.

    Article  CAS  Google Scholar 

  22. H. Krishnaswamy, M.J. Kim, S.-T. Hong, D. Kim, J.-H. Song, M.-G. Lee, and H.N. Han: Mater. Des., 2017, vol. 124, pp. 131–42.

    Article  CAS  Google Scholar 

  23. M.N. Shetty: Dislocations and Mechanical Behaviour of Materials, PHI Learning Pvt. Ltd., Delhi, 2013, pp. 326–495.

    Google Scholar 

  24. J. Schlipf: Mater. Sci. Eng., 1986, vol. 77, pp. 19–26.

    Article  Google Scholar 

  25. Y. Estrin and L.P. Kubin: Acta Metall., 1986, vol. 34, pp. 2455–64.

    Article  Google Scholar 

  26. L.P. Kubin and Y. Estrin: Acta Metall. Mater., 1990, vol. 38, pp. 697–708.

    Article  CAS  Google Scholar 

  27. Y. Bergström: Mater. Sci. Eng., 1970, vol. 5, pp. 193–200.

    Article  Google Scholar 

  28. B. Babu and L.-E. Lindgren: Int. J. Plast., 2013, vol. 50, pp. 94–108.

    Article  CAS  Google Scholar 

  29. A. Molinari and G. Ravichandran: Mech. Mater., 2005, vol. 37, pp. 737–52.

    Article  Google Scholar 

  30. K. Changela, H. Krishnaswamy, and R.K. Digavalli: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 648–66.

    Article  CAS  Google Scholar 

  31. R. Valiev: Nat. Mater., 2004, vol. 3, pp. 511–16.

    Article  CAS  Google Scholar 

  32. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  33. A. Vinogradov, S. Yasuoka, and S. Hashimoto: Mater. Sci. Forum., 2008, vol. 584–586, pp. 797–802.

    Article  Google Scholar 

  34. K. Changela, H. Krishnaswamy, and R.K. Digavalli: Mater. Sci. Eng. A., 2019, vol. 760, pp. 7–18.

    Article  CAS  Google Scholar 

  35. S. Kumar, H. Krishnaswamy, R.K. Digavalli, and S.K. Paul: J. Manuf. Process., 2019, vol. 38, pp. 49–62.

    Article  Google Scholar 

  36. D. Torre, E.V. Pereloma, and C.H.J. Davies: Scripta Mater., 2004, vol. 51, pp. 367–71.

    Article  CAS  Google Scholar 

  37. F. Diologent, R. Goodall, and A. Mortensen: Acta Mater., 2011, vol. 59, pp. 6869–79.

    Article  CAS  Google Scholar 

  38. S. Lee, S.-J. Lee, and B.C. De Cooman: Acta Mater., 2011, vol. 59, pp. 7546–53.

    Article  CAS  Google Scholar 

  39. M.S. Mohebbi, A. Akbarzadeh, Y.-O. Yoon, and S.-K. Kim: Mech. Mater., 2015, vol. 89, pp. 23–34.

    Article  Google Scholar 

  40. F.H. Dalla Torre, E.V. Pereloma, and C.H.J. Davies: Acta Mater., 2006, vol. 54, pp. 1135–46.

    Article  CAS  Google Scholar 

  41. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Mater. Sci. Eng. A., 2004, vol. 381, pp. 71–9.

    Article  CAS  Google Scholar 

  42. M. Moradpour, F. Khodabakhshi, and H. Eskandari: Mater. Sci. Technol., 2004, vol. 34, pp. 1003–17.

    Article  CAS  Google Scholar 

  43. C. Chinthanai Selvan, C. Sathiya Narayanan, B. Ravisankar, R. Narayanasamy, and C. Thillaiyadi Valliammai: Mater. Res. Express, 2020, vol. 7, pp. 036525(1–11).

  44. P. Wang, T. Yin, and Qu. Shaoxing: Scripta Mater., 2020, vol. 178, pp. 171–75.

    Article  CAS  Google Scholar 

  45. C. Zheng and L. Li: Mater. Sci. Eng. A., 2018, vol. 713, pp. 35–42.

    Article  CAS  Google Scholar 

  46. M. Montazeri-Pour and M.H. Parsa: Mech. Mater., 2016, vol. 94, pp. 117–31.

    Article  Google Scholar 

  47. H. Conrad: Mater. Sci. Eng., 1970, vol. 6, pp. 265–73.

    Article  CAS  Google Scholar 

  48. H. Conrad: Prog. Mater. Sci., 1981, vol. 26, pp. 123–403.

    Article  CAS  Google Scholar 

  49. F. Barlat, M.V. Glazov, J.C. Brem, and D.J. Lege: Int. J. Plast., 2002, vol. 18, pp. 919–39.

    Article  CAS  Google Scholar 

  50. U.F. Kocks, A.S. Argon, and M.F. Ashby: Prog. Mater. Sci., 1975, vol. 19, pp. 68–109.

    Article  Google Scholar 

  51. D. Caillard and J.L. Martin: Pergamon Mater. Ser., 2003, vol. 8, pp. 57–82.

    Article  Google Scholar 

  52. C.A. Howard and R.J. Stokes: Proc. R. Soc. Lond. A., 1955, vol. 233, pp. 17–34.

    Article  Google Scholar 

  53. Z.S. Basinski: Philos. Mag., 1958, vol. 4, pp. 393–432.

    Article  Google Scholar 

  54. D.L. Holt: J. Appl. Phys., 1970, vol. 41, pp. 3197–201.

    Article  Google Scholar 

  55. H. Krishnaswamy and F. Barlat: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 513–17.

    Google Scholar 

  56. S.H. He, K.Y. Zhu, and M.X. Huang: Comput. Mater. Sci., 2017, vol. 131, pp. 1–10.

    Article  Google Scholar 

  57. S.K. Panigrahi and R. Jayaganthan: Mater. Sci. Eng. A., 2011, vol. 528, pp. 3147–60.

    Article  CAS  Google Scholar 

  58. R.Z. Valiev, N.A. Enikeev, MYu. Murashkin, V.U. Kazykhanov, and X. Sauvage: Scripta Mater., 2010, vol. 63, pp. 949–52.

    Article  CAS  Google Scholar 

  59. F. Guiu and P.L. Pratt: Phys. Status Solidi B., 1964, vol. 6, pp. 111–20.

    Article  Google Scholar 

  60. P. Feltham: Philos. Mag., 1961, vol. 6, pp. 847–50.

    Article  CAS  Google Scholar 

  61. J. Bonneville, P. Spätig, and J.L. Martin: MRS Online Proc. Libr., 1994, vol. 364, pp. 369–74.

    Article  Google Scholar 

  62. A. Varma, H. Krishnaswamy, J. Jain, M.-G. Lee, and F. Barlat: Mech. Mater., 2019, vol. 133, pp. 138–53.

    Article  Google Scholar 

  63. P.M. Anderson, J.P. Hirth, and J. Lothe: Theory of Dislocations, 3rd ed. Cambridge University Press, New York, 2017, pp. 413–54.

    Google Scholar 

  64. X.-S. Yang, Y.-J. Wang, G.-Y. Wang, H.-R. Zhai, L.H. Dai, and T.-Y. Zhang: Acta Mater., 2016, vol. 108, pp. 252–63.

    Article  CAS  Google Scholar 

  65. I.-C. Choi, Y.-J. Kim, B. Ahn, M. Kawasaki, T.G. Langdon, and J.-i Jang: Scripta Mater., 2014, vol. 75, pp. 102–05.

    Article  CAS  Google Scholar 

  66. Y. Xiao, B. Gan, A. S. Sologubenko, R. Spolenak, and J.M. Wheeler: Mater. Sci. Eng. A, 2021, vol. 800, pp. 140266(1–8).

  67. Y.M. Wang, A.V. Hamza, and E. Ma: Appl. Phys. Lett., 2005, vol. 86, pp. 241917(1–3).

  68. R.W. Hayes, D. Witkin, F. Zhou, and E.J. Lavernia: Acta Mater., 2004, vol. 52, pp. 4259–71.

    Article  CAS  Google Scholar 

  69. H. Krishnaswamy and J. Jain: Manuf. Lett., 2020, vol. 26, pp. 64–68.

    Article  Google Scholar 

  70. T. Kruml, O. Coddet, and J.L. Martin: Acta Mater., 2008, vol. 56, pp. 333–40.

    Article  CAS  Google Scholar 

  71. K. Sunil Kumar, H. Krishnaswamy, and R.K. Digavalli: Mater. Manuf. Processes., 2020, vol. 35, pp. 687–99.

    Article  CAS  Google Scholar 

  72. S. Kumar, S. Venkatachalam, H. Krishnaswamy, R.K. Digavalli, and H.S.N. Murthy: J. Eng. Mater. Technol., 2019, vol. 141, pp. 041007(1–10).

  73. K. Hashiguchi: Elastoplasticity Theory, 2nd ed. Springer, Berlin Heidelberg, 2014, pp. 379–420.

    Google Scholar 

  74. D.R. Satish, F. Feyissa, and D.R. Kumar: Mater. Manuf. Processes., 2017, vol. 32, pp. 1345–52.

    Article  CAS  Google Scholar 

  75. B. Modi and D.R. Kumar: Int. J. Adv. Manuf. Technol., 2013, vol. 66, pp. 1159–69.

    Article  Google Scholar 

  76. H. Krishnaswamy, P. Dubey, and J. Jain: Mater. Sci. Eng. A., 2016, vol. 673, pp. 250–56.

    Article  CAS  Google Scholar 

  77. L. Yong and Z. Jingchuan: Mech. Mater., 2008, vol. 40, pp. 792–95.

    Article  Google Scholar 

  78. S. Mishra, V.K. Beura, A. Singh, and M. Yadava: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 3472–77.

    Article  CAS  Google Scholar 

  79. L. Xiao and J.L. Bai: Mater. Sci. Eng. A., 1998, vol. 244, pp. 250–56.

    Article  Google Scholar 

  80. A. Varma, A. Gokhale, J. Jain, H. Krishnaswamy, P. Cizek, and M. Barnett: Philos. Mag., 2018, vol. 255, pp. 165–81.

    Article  CAS  Google Scholar 

  81. K. Prasad, H. Krishnaswamy, and J. Jain: J. Mater. Process. Technol., 2018, vol. 98, pp. 1–7.

    Article  CAS  Google Scholar 

  82. Y. Wang, Y. Liu, and J.T. Wang: Mater. Sci. Eng. A., 2015, vol. 635, pp. 86–93.

    Article  CAS  Google Scholar 

  83. R.J. Asaro and S. Suresh: Acta Mater., 2005, vol. 635, pp. 3369–82.

    Article  CAS  Google Scholar 

  84. Y.M. Wang, A.V. Hamza, and E. Ma: Acta Mater., 2006, vol. 54, pp. 2715–26.

    Article  CAS  Google Scholar 

  85. C.X. Huang, W.P. Hu, and Q.Y. Wang: Mater. Sci. Eng. A., 2014, vol. 611, pp. 274–79.

    Article  CAS  Google Scholar 

  86. Q. Wei: J. Mater. Sci., 2007, vol. 42, pp. 1709–27.

    Article  CAS  Google Scholar 

  87. S.S.S. Kumar and T. Raghu: Mater. Des., 2014, vol. 57, pp. 114–20.

    Article  CAS  Google Scholar 

  88. Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, and T.G. Langdon: Acta Mater., 2000, vol. 48, pp. 3633–40.

    Article  CAS  Google Scholar 

  89. A. Dhal, S.K. Panigrahi, and M.S. Shunmugam: J. Alloys Compd., 2017, vol. 726, pp. 1205–19.

    Article  CAS  Google Scholar 

  90. I.S. Yasnikov, A. Vinogradov, and Y. Estrin: Scripta Mater., 2014, vol. 76, pp. 37–40.

    Article  CAS  Google Scholar 

  91. S. Kumar, P.P. Date, and K. Narasimhan: J. Mater. Process. Technol., 1994, vol. 45, pp. 583–88.

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hariharan Krishnaswamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Myoung Gyu Lee's given name was corrected.

Appendices

Appendix I: UMAT algorithm

  1. 1.

    Values at previous steps (nth step):

    • Stress components at nth step: \({\underline{\sigma }}_n\)

    • Logarithmic strain components at nth step: \({\underline{\varepsilon }}_n\)

    • Plastic strain components at nth step: \({\underline{\varepsilon }}^p_n\)

    • Effective plastic strain at nth step: \(p_n\)

    • Dislocation density at nth step: \(\rho _n\)

  2. 2.

    Increment in logarithmic (true) strain components \( \Delta {\underline{\varepsilon }}_{n+1} \) is given by ABAQUS FEA software based on the time step and displacement boundary conditions (Linearly ramped over the total step time).

  3. 3.

    Compute elastic predictor:

    • \({\underline{\sigma }}^{(0)}_{n+1} = {\underline{\sigma }}_{n} + \underline{{\underline{E}}}.\Delta {\underline{\varepsilon }}_{n+1}\) where \(\underline{{\underline{E}}}\) is the elastic stiffness matrix.

    • \({\underline{\varepsilon }}_{n+1}^{p(0)} = {\underline{\varepsilon }}_{n}^{p}\)

    • \(p^{(0)}_{n+1} = p_n\)

    • \(\rho ^{(0)}_{n+1} = \rho _n\)

      Then calculate predictor Von Mises equivalent stress and predictor yield stress values,

    • \(\bar{\sigma }^{(0)}_{n+1} = \phi ({\underline{\sigma }}^{(0)}_{n+1})\)

    • \((\sigma _y)^{(0)}_{n+1} = f(\rho _{n+1}^{(0)}) = C \sqrt{\rho _{n+1}^{(0)}}\)

  4. 4.

    Check if Yield condition is satisfied.

    Predictor yield function, \(F_{n+1}^{(0)} = \bar{\sigma }^{(0)}_{n+1} - (\sigma _y)^{(0)}_{n+1}\)

    If \(F^{(0)}_{n+1} < 0\), then material is in elastic regime, set the trial state to be the final state.

    • \({\underline{\sigma }}_{n+1} = {\underline{\sigma }}^{(0)}_{n+1}\)

    • \({\underline{\varepsilon }}^{p}_{n+1} = {\underline{\varepsilon }}^{p(0)}_{n+1}\)

    • \(p_{n+1} = p^{(0)}_{n+1}\)

    • \(\rho _{n+1} = \rho ^{(0)}_{n+1}\)

      Begin next Cycle from Step 1.

      If \(F^{(0)}_{n+1} \ge 0\), then the material has yielded. Proceed to next step.

  5. 5.

    Commence the newton iteration. Set iteration no. \(k=0\) and \(\Delta p^{(0)}_{n+1} = 0\), \(\Delta \rho ^{(0)}_{n+1} = 0\)

    From Radial Return Algorithm for Von Mises,

    $$\begin{aligned} \bar{\sigma }_{n+1} = \bar{\sigma }^{(0)}_{n+1} - 3G\Delta p_{n+1} \end{aligned},$$
    (A1)

    where G is the Shear Modulus of the material.

    $$\begin{aligned} (\sigma _y)_{n+1}= & f(\rho _{n+1}) = f(\rho _n + \Delta \rho _{n+1}) = f(\Delta \rho _{n+1}) \nonumber \\= & f(\Delta p_{n+1}) \end{aligned}.$$
    (A2)
    $$\begin{aligned} \therefore F^{(k)}_{n+1}= & \bar{\sigma }^{(k)}_{n+1} - (\sigma _y)^{(k)}_{n+1} = \bar{\sigma }^{(0)}_{n+1} - 3G\Delta p^{(k)}_{n+1} \nonumber \\&- (\sigma _y)^{(k)}_{n+1} = F(\Delta p^{(k)}_{n+1}) \end{aligned}.$$
    (A3)

    By Newton Raphson method,

    $$\begin{aligned} \Delta p^{(k+1)}_{n+1}= & \Delta p^{(k)}_{n+1} + d\Delta p^{(k+1)}_{n+1}\nonumber \\ \text {where }\,d\Delta p^{(k+1)}_{n+1}= & - \dfrac{F(\Delta p^{(k)}_{n+1})}{F^{'}(\Delta p^{(k)}_{n+1})} = \dfrac{\bar{\sigma }^{(0)}_{n+1} - 3G\Delta p^{(k)}_{n+1} - (\sigma _y)_{n+1}^{(k)}}{3G + \dfrac{\partial (\sigma _y)_{n+1}^{(k)}}{\partial \Delta p^{(k)}_{n+1}}} \end{aligned},$$
    (A4)
    $$\begin{aligned} (\sigma _y)_{n+1}^{(k)}= &C \sqrt{\rho _{n+1}^{(k)}} = C \sqrt{\rho _{n} + \Delta \rho _{n+1}^{(k)}} \end{aligned},$$
    (A5)

    By chain rule,

    $$\begin{aligned} \dfrac{\partial (\sigma _y)_{n+1}^{(k)}}{\partial \Delta p^{(k)}_{n+1}}= & \dfrac{\partial (\sigma _y)_{n+1}^{(k)}}{\partial \Delta \rho ^{(k)}_{n+1}} * \dfrac{\partial \Delta \rho _{n+1}^{(k)}}{\partial \Delta p^{(k)}_{n+1}} \end{aligned},$$
    (A6)
    $$\begin{aligned} \dfrac{\partial (\sigma _y)_{n+1}^{(k)}}{\partial \Delta \rho ^{(k)}_{n+1}}= & \dfrac{C}{2 \sqrt{\rho _n + \Delta \rho ^{(k)}_{(n+1)}}} \nonumber \\ \dfrac{\partial (\sigma _y)_{n+1}^{(k)}}{\partial \Delta \rho ^{(k)}_{n+1}}= & \dfrac{C}{2 \sqrt{\rho _n + \Delta \rho ^{(k)}_{(n+1)}}} \end{aligned},$$
    (A7)
    $$\begin{aligned} \therefore d\Delta p^{(k+1)}_{n+1}= & \dfrac{\bar{\sigma }^{(0)}_{n+1} - 3G\Delta p^{(k)}_{n+1} - C \sqrt{\rho _{n} + \Delta \rho _{n+1}^{(k)}}}{3G + \dfrac{C M\left[ K_0 + K\left( 1-\exp \left( {-\psi \sqrt{\rho _n + \Delta \rho ^{(k)}_{(n+1)}}}\right) \right) - K_2\left( \rho _n + \Delta \rho _{n+1}^{(k)}\right) \right] }{2 \sqrt{\rho _n + \Delta \rho ^{(k)}_{(n+1)}}}} \end{aligned}.$$
    (A8)

    To calculate \( \Delta \rho ^{(k+1)}_{n+1}\), we use Euler’s method of Forward marching for Initial Value Problems,

    $$\begin{aligned} \Delta \rho ^{(k+1)}_{n+1}= & \Delta \rho ^{(k)}_{n+1} + \left( \dfrac{\partial \Delta \rho ^{(k)}_{n+1}}{\partial \Delta p^{(k)}_{n+1}}\right) *d\Delta\Delta p^{(k+1)}_{n+1} \end{aligned},$$
    (A9)
    $$\begin{aligned} (\sigma _y)^{(k+1)}_{n+1}= & f(\rho ^{(k+1)}_{n+1}) = f(\rho _n + \Delta \rho ^{(k+1)}_{n+1}) = C \sqrt{\rho _{n} + \Delta \rho _{n+1}^{(k+1)}} \end{aligned},$$
    (A10)
    $$\begin{aligned} F^{(k+1)}_{n+1}= & \bar{\sigma }^{(0)}_{n+1} - 3G\Delta p^{(k+1)}_{n+1} - (\sigma _y)^{(k+1)}_{n+1} \end{aligned}.$$
    (A11)

    The iteration continues till the value of \(F^{(k+1)}_{n+1}\) reduces below a tolerance value say \(10^{-6}\).

    Then \(\Delta p_{n+1} = \Delta p^{(k+1)}_{n+1}\) and \(\Delta \rho _{n+1} = \Delta \rho ^{(k+1)}_{n+1}\)

  6. 6.

    Update increments in plastic strain components

    $$\begin{aligned} \Delta {\underline{\varepsilon }}^{(p)}_{n+1} = \Delta p_{n+1}\dfrac{\partial \phi _{(n+1)}}{\partial {\underline{\sigma }}_{n+1}} = \dfrac{3}{2} \Delta p_{(n+1)} \dfrac{{\underline{S}}^{(0)}_{(n+1)}}{ {\bar{\sigma }}^{(0)}_{n+1}} \text {(Applicable\,\, for\, \,Von\,\, Mises\,\, yield\,\, criterion)} \end{aligned},$$
    (A12)

    where \({\underline{S}}_{(n+1)}\) represents the Deviatoric Stress components.

  7. 7.

    Update new values of Stress components, effective plastic strain, and dislocation density

    \({\underline{\sigma }}_{n+1} = {\underline{\sigma }}_{n} + \underline{{\underline{E}}}.(\Delta {\underline{\varepsilon }}_{n+1} - \Delta {\underline{\varepsilon }}^{(p)}_{n+1})\)

    \( p_{n+1}=p_{n}+\Delta p_{n+1} \)

    \( \rho _{n+1}=\rho _{n}+\Delta \rho _{n+1} \)

  8. 8.

    Jacobian Matrix for Von Mises under Radial Return Algorithm

    $$\begin{aligned} \underline{{\underline{J}}} = \underline{{\underline{E}}}-\frac{(\underline{{\underline{E}}}\cdot {\underline{n}}) \times (\underline{{\underline{E}}}\cdot {\underline{n}})}{{\underline{n}} \cdot (\underline{{\underline{E}}} \cdot {\underline{n}})+h} \end{aligned},$$
    (A13)

    where \({\underline{n}} = \frac{\partial \phi _{n+1}}{\partial {\underline{\sigma }}_{n+1}}=\frac{3}{2}*\frac{{\underline{S}}^{(0)}_{(n+1)}}{{\bar{\sigma }}^{(0)}_{n+1}}\)

    and \(h = \frac{\partial (\sigma _y)_{n+1}}{\partial p_{n+1}} = \frac{\partial (\sigma _y)_{n+1}}{\partial \rho _{n+1}}\frac{\partial \rho _{n+1}}{\partial p_{n+1}}= \frac{C}{2\sqrt{\rho _{n+1}}}M\left[ K_{0}+K\left( 1-\exp (-\psi \sqrt{\rho _{n+1}})\right) - K_{2}\rho _{n+1}\right]. \)

Appendix II: Method for Least-Square Fitting of Modified KME Model Parameters

Upon identifying the rate-dependent constants \({\dot{\varepsilon }}_0\) and m as explained in Section II–C, the remaining constants C, \(K_0\), K, \(K_2\) and \(\psi \) can be estimated by fitting the experimental true stress–true plastic strain data using least-square method. In the present work, an open source software ‘SCILAB’ is used for the purpose.

From equations 4 and 7, using chain rule,

$$\begin{aligned} \dfrac{{\text{d}}\sigma }{{\text{d}}\varepsilon } = \dfrac{{\text{d}}\sigma }{{\text{d}}\rho } \dfrac{d\rho }{d\varepsilon } = \dfrac{C}{2\sqrt{\rho }} M \left[ K_0 + K\left( 1-\exp \left( -\psi \sqrt{\rho }\right) \right) - K_2\rho \right] \end{aligned}.$$
(A14)

Eliminating \(\rho \) by substituting \(\rho = \left( \dfrac{\sigma }{C}\right) ^2\), we obtain

$$\begin{aligned} \dfrac{{\text{d}}\sigma }{{\text{d}}\varepsilon }= & M \left[ \dfrac{C^2 k_0}{2 \sigma } + \dfrac{C^2 k}{2 \sigma }\left( 1 - \exp \left( -\psi \dfrac{\sigma }{C}\right) \right) - k_2 \dfrac{\sigma }{2}\right] \nonumber \\= & f(\sigma , C, k_0, k, k_2 \psi ) \end{aligned}.$$
(A15)

At zero plastic strain (\(\varepsilon = 0\)), \(\sigma (0)= \sigma _0\), the initial yield stress, which is available from the experimental data. Thus, the above equation gives the evolution of stress with plastic strain in the form of an initial value ODE.

$$\begin{aligned} \sigma _{\text {ODE}} = {\text {ODE}}(\sigma _0,\varepsilon ,f(\sigma , C, k_0, k ,k_2, \psi )) \end{aligned}.$$
(A16)

The error function for this problem is the sum of the squares of the differences between the ODE solution and the experimental values of true stress.

$$\begin{aligned} \text {err} = \varSigma ( (\sigma _{{\text {ODE}}}- \sigma _{expt} )^2 ) \end{aligned}.$$
(A17)

The minimization of this error function gives us the optimum values of the parameters \(C,\,K_0,\,K,\,K_2\) and \(\psi \). The set of initial guess values for all the parameters are iterated over a range to ensure that the solution of curve fitting is consistent.

Appendix III: Sample MATLAB Code

See Fig. A1.

Fig. A1
figure 15

Sample Matlab ODE 45 code

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, V., Kumar, S., Krishnaswamy, H. et al. Transient Stress Relaxation Test to Identify Material Constants in Dislocation Density Model. Metall Mater Trans A 53, 1969–1990 (2022). https://doi.org/10.1007/s11661-022-06624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06624-2

Navigation