Skip to main content

Advertisement

Log in

Comprehensive Analysis of Microalloying Element V Improving Hydrogen Embrittlement Resistance of 1300MPa Bolt Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the effect of vanadium addition (0.14 wt pct) on microstructure and hydrogen embrittlement (HE) susceptibility were investigated in 1300 MPa strength level bolt steel, and hydrogen trapping and diffusion were analyzed by hydrogen permeation and thermal desorption spectroscopy (TDS). The results showed that the addition of 0.14 wt pct V in the bolt steel can significantly improve the HE resistance. The vanadium addition can form a large number of V precipitates. Compared with the V-free bolt steel with the same strength, the vanadium addition steel possessed more significant precipitation strengthening and lower dislocation density, which was the main reason to reduce the HE susceptibility. In addition, the vanadium precipitates can provide a lot of hydrogen traps and refine the grains, resulting in the uniform distribution of hydrogen and the reduction of hydrogen accumulated at local grain boundaries, which was helpful to inhibit the hydrogen induced cracking (HIC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. A. Kuduzović, M.C. Poletti, C. Sommitsch, M. Domankova, S. Mitsche, and R. Kienreich: Mater. Sci. Eng. A., 2014, vol. 590, pp. 66–73.

    Article  Google Scholar 

  2. J.O. Ham, Y.H. Jang, G.P. Lee, B.G. Kim, K.H. Rhee, and C.K. Cho: Mater. Sci. Eng. A., 2013, vol. 581, pp. 83–9.

    Article  CAS  Google Scholar 

  3. Y.X. Zou, B.Z. Wang, Y.Z. Jiang, M.W. Huang, J. Yi, and J.Y. Yi: Procedia Comput. Sci., 2019, vol. 154, pp. 124–29.

    Article  Google Scholar 

  4. A. Acri, S. Beretta, F. Bolzoni, C. Colombo, and L.M. Vergani: Eng. Fail. Anal., 2020, vol. 109, p. 104330.

    Article  CAS  Google Scholar 

  5. B. Zhang, S. Li, and J. He: Metall. Mater. Trans. A., 2021, vol. 52, pp. 2314–30.

    Article  CAS  Google Scholar 

  6. H.J. Kim, S.H. Jeon, W.S. Yang, B.G. Yoo, Y.D. Chung, H.Y. Ha, and H.Y. Chung: J. Alloys. Compd., 2018, vol. 735, pp. 2067–80.

    Article  CAS  Google Scholar 

  7. S. Zhang, Y. Huang, B. Sun, Q. Liao, H. Lu, B. Jian, H. Mohrbacher, W. Zhang, A. Guo, and Y. Zhang: Mater. Sci. Eng. A., 2015, vol. 626, pp. 136–43.

    Article  CAS  Google Scholar 

  8. J. Takahashi, K. Kawakami, Y. Kobayashi, and T. Tarui: Scripta Mater., 2010, vol. 63, pp. 261–64.

    Article  CAS  Google Scholar 

  9. F.G. Wei and K. Tsuzaki: Metall. Mater. Trans. A., 2006, vol. 37, pp. 331–53.

    Article  Google Scholar 

  10. J. Takahashi, K. Kawakami, H. Otsuka, and H. Fujii: Ultramicroscopy., 2009, vol. 109, pp. 568–73.

    Article  CAS  Google Scholar 

  11. C.L. Zhang, Y.Z. Liu, C. Jiang, and J.F. Xiao: J. Iron Steel Res Int., 2011, vol. 18, pp. 49–53.

    Article  CAS  Google Scholar 

  12. A.M. Brass, F. Guillon, and S. Vivet: Metall. Mater. Trans. A., 2004, vol. 35, pp. 1449–64.

    Article  Google Scholar 

  13. B.A. Szost, R.H. Vegter, and P.E.J. Rivera-Díaz-del-Castillo: Mater. Des., 2013, vol. 43, pp. 499–506.

    Article  CAS  Google Scholar 

  14. J. Takahashi, K. Kawakami, and T. Tarui: Scripta Mater., 2012, vol. 67, pp. 213–6.

    Article  CAS  Google Scholar 

  15. F. Wei, T. Hara, and K. Tsuzaki: Metall. Mater. Trans. B., 2004, vol. 35, pp. 587–97.

    Article  Google Scholar 

  16. B. Szost, R.H. Vegter, and P. Rivera-Diaz-del-Castillo: Metall. Mater. Trans. A., 2013, vol. 44(10), pp. 4542–50.

    Article  CAS  Google Scholar 

  17. B. Malard, B. Remy, C. Scott, A. Deschamps, J. Chêne, T. Dieudonné, and M.H. Mathon: Mater. Sci. Eng. A., 2012, vol. 536, pp. 110–6.

    Article  CAS  Google Scholar 

  18. H. Gwon, S. Shin, J. Jeon, T. Song, S.K. Kim, and B.D. Cooman: Metals Mater. Int., 2018, vol. 89(11), pp. 3708–25.

    Google Scholar 

  19. J. Lee, T. Lee, Y. Kwon, D.J. Mun, J.Y. Yoo, and C.S. Lee: Met. Mater. Int., 2016, vol. 22, pp. 364–72.

    Article  CAS  Google Scholar 

  20. L.F. Li, B. Song, J. Cheng, Z.B. Yang, and Z.Y. Cai: Int. J. Hydrogen Energy., 2018, vol. 43, pp. 17353–63.

    Article  CAS  Google Scholar 

  21. F. Dong, J. Venezuela, H. Li, Z. Shi, Q.J. Zhou, L.S. Chen, J. Chen, L.X. Du, and A. Atrens: Corrosion Sci., 2021, vol. 185, p. 109440.

    Article  CAS  Google Scholar 

  22. A. Turk, D.S. Martín, P.E.J. Rivera-Díaz-del-Castillo, and E.I. Galindo-Nava: Scr. Mater., 2018, vol. 152, pp. 112–6.

    Article  CAS  Google Scholar 

  23. H. Asahi, D. Hirakami, and S. Yamasaki: ISIJ INT., 2003, vol. 43, pp. 527–33.

    Article  CAS  Google Scholar 

  24. X.B. Cheng, X.Y. Cheng, C.W. Jiang, X.Y. Zhang, and Q.F. Wen: Mater. Lett., 2018, vol. 213, pp. 118–21.

    Article  CAS  Google Scholar 

  25. C. Park, N. Kang, and S. Liu: Corros. Sci., 2017, vol. 128, pp. 33–41.

    Article  CAS  Google Scholar 

  26. K. Takasawa, R. Ikeda, N. Ishikawa, and R. Ishigaki: Int. J. Hydrogen Energy., 2012, vol. 37, pp. 2669–75.

    Article  CAS  Google Scholar 

  27. A. Shibata, T. Matsuoka and N. Tsuji, (2013): pp. 583–9.

  28. M. Koyama, H.Y. Wang, V.K. Verma, K. Tsuzaki, and E. Akiyama: Metall. Mater. Trans. A., 2020, vol. 51, pp. 5612–6.

    Article  CAS  Google Scholar 

  29. M. Liu, C.H. Wang, Y. Dai, X. Li, G.H. Cao, A.M. Russell, Y.H. Liu, X.M. Dong, and Z.H. Zhang: Mater. Sci. Eng. A., 2017, vol. 688, p. 387.

    Google Scholar 

  30. Y.J. Momotani, A. Shibata, T. Yonemura, Y. Bai, and N. Tsuji: Scripta Mater., 2020, vol. 178, pp. 318–23.

    Article  CAS  Google Scholar 

  31. E.I. Galindo-Nava, B.I.Y. Basha, and P.E.J. Rivera-Díaz-del-Castillo: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1433–47.

    Article  CAS  Google Scholar 

  32. W.H. Hall: Proc. Phys. Soc. Sect. A., 1949, vol. 62, pp. 741–3.

    Article  Google Scholar 

  33. M. Devanathan and Z. Stachurski: J. Electrochem. Soc., 1964, vol. 111, p. 619.

    Article  CAS  Google Scholar 

  34. Y.B. Hu, C.F. Dong, H. Luo, K. Xiao, P. Zhong, and X.G. Li: Metall. Mater. Trans. A., 2017, vol. 48, pp. 4046–57.

    Article  CAS  Google Scholar 

  35. Y.D. Han, R.Z. Wang, H. Wang, and L.Y. Xu: Int. J. Hydrogen Energy., 2019, vol. 44, pp. 22380–93.

    Article  CAS  Google Scholar 

  36. A.J. Haq, K. Muzaka, D.P. Dunne, A. Calka, and E.V. Pereloma: Int. J. Hydrogen Energy., 2013, vol. 38, pp. 2544–56.

    Article  CAS  Google Scholar 

  37. Y. Liu, M.Q. Wang, and G.Q. Liu: Mater. Sci. Eng. A., 2014, vol. 594, pp. 40–7.

    Article  CAS  Google Scholar 

  38. Y.W. Sun, J.Z. Chen, and J. Liu: Mater. Sci. Eng. A., 2015, vol. 625, pp. 89–97.

    Article  CAS  Google Scholar 

  39. W.Y. Choo and J.Y. Lee: Metall. Trans. A., 1982, vol. 13, pp. 135–40.

    Article  Google Scholar 

  40. S.J. Li, Z.G. Zhang, E. Akiyama, K. Tsuzaki, and B.P. Zhang: Corros. Sci., 2010, vol. 52, pp. 1660–7.

    Article  CAS  Google Scholar 

  41. Y. Liu, M.Q. Wang, and G.Q. Liu: Int. J. Hydrogen Energy., 2013, vol. 38, pp. 14364–8.

    Article  CAS  Google Scholar 

  42. Q. Wang, Y. Sun, S.J. Gu, Z.N. He, Q.F. Wang, and F.C. Zhang: Mater. Sci. Eng. A., 2018, vol. 724, pp. 131–41.

    Article  CAS  Google Scholar 

  43. I.J. Park, K.H. Jeong, J.G. Jung, C.S. Lee, and Y.K. Lee: Int. J. Hydrogen Energy., 2012, vol. 37, pp. 9925–32.

    Article  CAS  Google Scholar 

  44. K. P. Balan, In Metallurgical Failure Analysis, ed. Kannadi Palankeezhe Balan (Elsevier: 2018), pp 179–202.

  45. J. Lee, T. Lee, Y. Kwon, D.J. Mun, J.Y. Yoo, and C.S. Lee: Corros. Rev., 2015, vol. 33, pp. 433–41.

    Article  CAS  Google Scholar 

  46. T. Depover and K. Verbeken: Mater. Sci. Eng. A., 2016, vol. 675, pp. 299–313.

    Article  CAS  Google Scholar 

  47. J. Takahashi, K. Kawakami, and Y. Kobayashi: Acta Mater., 2018, vol. 153, pp. 193–204.

    Article  CAS  Google Scholar 

  48. A. Drexler, T. Depover, S. Leitner, K. Verbeken, and W. Ecker: J. Alloys Compds., 2020, vol. 826, p. 154057.

    Article  CAS  Google Scholar 

  49. Y.S. Ding, L.W. Tsay, M.F. Chiang, and C. Chen: J. Nucl. Mater., 2009, vol. 385, pp. 538–44.

    Article  CAS  Google Scholar 

  50. Y. Komatsuzaki, H. Joo, and K. Yamada: Eng. Fract. Mech., 2008, vol. 75, pp. 551–9.

    Article  Google Scholar 

  51. R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano: Mater. Sci. Eng. A., 2005, vol. 394, pp. 339–52.

    Article  Google Scholar 

  52. A. Ning, Investigation on Nanoscale Precipitates in Hot-Work Die Steel and Comprehensive Strengthening Mechanism of Steel, PhD Thesis, University of Science and Technology Beijing, 2015 (In Chinese).

  53. L.Y. Lan, C. Qiu, D. Zhao, and X. Gao: Hanjie Xuebao., 2012, vol. 33, pp. 41–4.

    CAS  Google Scholar 

  54. B. Liao and F.R. Xiao: Cailiao Rechuli Xuebao., 2009, vol. 30, pp. 57–62.

    CAS  Google Scholar 

  55. X.P. Mao, X.D. Huo, X.J. Sun, and Y.Z. Chai: J. Mater. Process. Technol., 2010, vol. 210, pp. 1660–6.

    Article  CAS  Google Scholar 

  56. Y.W. Kim, S.W. Song, S.J. Seo, S.G. Hong, and C.S. Lee: Mater. Sci. Eng. A., 2013, vol. 565, pp. 430–8.

    Article  CAS  Google Scholar 

  57. H. Halfa: J. Minerals Mater. Charact. Eng., 2014, vol. 02, pp. 428–69.

    Google Scholar 

  58. H.B. Wu, B. Ju, D. Tang, R.R. Hu, A.M. Guo, Q. Kang, and D. Wang: Mater. Sci. Eng. A., 2015, vol. 622, pp. 61–6.

    Article  CAS  Google Scholar 

  59. M.Q. Wang, E. Akiyama, and K. Tsuzaki: Corros. Sci., 2007, vol. 49, pp. 4081–97.

    Article  CAS  Google Scholar 

  60. M.B. Djukic, V.S. Zeravcic, G.M. Bakic, A. Sedmak, and B. Rajicic: Eng. Fail. Anal., 2015, vol. 58, pp. 485–98.

    Article  CAS  Google Scholar 

  61. S.K. Bonagani, B. Vishwanadh, S. Tenneti, N.N. Kumar, and V. Kain: Int. J. Pressure Vessels Pip., 2019, vol. 176, p. 103969.

    Article  CAS  Google Scholar 

  62. A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 5182–9.

    Article  CAS  Google Scholar 

  63. M.J. Gomes da Silva, J.L. Cardoso, D.S. Carvalho, L.P.M. Santos, L.F.G. Herculano, H.F. Gomes de Abreu, and J.M. Pardal: Int. J. Hydrogen Energy., 2019, vol. 44, pp. 18606–15.

    Article  CAS  Google Scholar 

  64. N. Zan, H. Ding, X.F. Guo, Z.Y. Tang, and W. Bleck: Int. J. Hydrogen Energy., 2015, vol. 40, pp. 10687–96.

    Article  CAS  Google Scholar 

  65. Y.H. Fan, B. Zhang, J.Q. Wang, E.H. Han, and W. Ke: J. Mater. Sci. Technol., 2019, vol. 35, pp. 2213–9.

    Article  Google Scholar 

  66. A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O. Ritchie: J. Mech. Phys. Solids., 2018, vol. 112, pp. 403–30.

    Article  CAS  Google Scholar 

  67. C.A. Zapffe and C.E. Sims: Am. Innst. Mining Met. Engrs. Tech. Pub., 1941, vol. 1307, pp. 1–37.

    Google Scholar 

Download references

Acknowledgments

This project was supported by the National Nature Science Foundation of China under Grant Nos. 52071016 and U1760203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxu Li.

Ethics declarations

Conflict of interest

The authors declared that they did not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 10, 2021; accepted November 22, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Li, W., Hu, P. et al. Comprehensive Analysis of Microalloying Element V Improving Hydrogen Embrittlement Resistance of 1300MPa Bolt Steel. Metall Mater Trans A 53, 861–873 (2022). https://doi.org/10.1007/s11661-021-06557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06557-2

Navigation