Skip to main content
Log in

The influence of adding niobium and vanadium on hydrogen diffusion in 22MnB5 hot stamping steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Adding alloying elements is always considered as an effective method to enhance the resistance against hydrogen embrittlement in steels. Nb and V were added into 22MnB5 hot stamping steel, and then their influences on hydrogen permeation of 22MnB5 steel suffering from corrosion in 3.5% NaCl aqueous solution were investigated. The results showed that the addition of Nb/V could reduce the hydrogen permeation content due to solution corrosion. Electrochemical techniques including electrochemical impedance spectroscopy and overpotential stepping hydrogen permeation test confirmed that compared to the original 22MnB5 steel, 22MnB5-Nb/V steel owned a higher corrosion resistance and a higher hydrogen diffusion resistance. Furthermore, it was confirmed that Nb–V-alloyed 22MnB5 steel showed higher resistance against hydrogen embrittlement than the Nb–V-free counterpart, which should be related to the presentence of nanoscaled Nb/V-containing precipitates as the irreversible trapping sites for hydrogen detected by thermal desorption spectroscopy. Finally, the lattice diffusion coefficient of hydrogen DL was determined in steels with and without Nb and V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W.H. Johnson, Nature 393 (1875) 1476–4687.

    Google Scholar 

  2. H.K.D.H. Bhadeshia, ISIJ Int. 56 (2015) 24–36.

    Article  Google Scholar 

  3. Y.S. Chen, H.Z. Lu, J.T. Liang, A. Rosenthal, H.W. Liu, G. Sneddon, I. Mccarroll, Z. Zhao, W. Li, A. Guo, Science 367 (2020) 171–175.

    Article  Google Scholar 

  4. E. Akiyama, K. Matsukado, M. Wang, K. Tsuzaki, Corros. Sci. 52 (2010) 2758–2765.

    Article  Google Scholar 

  5. E. Akiyama, S. Li, T. Shinohara, Z. Zhang, K. Tsuzaki, Electrochim. Acta 56 (2011) 1799–1805.

    Article  Google Scholar 

  6. S. Ootsuka, S. Fujita, E. Tada, A. Nishikata, T. Tsuru, Corros. Sci. 98 (2015) 430–437.

    Article  Google Scholar 

  7. T. Omura, H. Matsumoto, T. Hasegawa, Y. Miyakoshi, ISIJ Int. 56 (2016) 385–391.

    Article  Google Scholar 

  8. S. Li, E. Akiyama, N. Uno, K. Hirai, K. Tsuzaki, B. Zhang, Corros. Sci. 52 (2010) 3198–3204.

    Article  Google Scholar 

  9. N. Sato, T. Takahashi, I. Muto, T. Omura, Y. Sugawara, N. Hara, ISIJ Int. 56 (2016) 495–497.

    Article  Google Scholar 

  10. S. Li, Z. Zhang, E. Akiyama, K. Tsuzaki, B. Zhang, Corros. Sci. 52 (2010) 1660–1667.

    Article  Google Scholar 

  11. S. Hastuty, H. Katayama, AIP Conference Proceedings 1778 (2016) 030063.

    Article  Google Scholar 

  12. S. Li, E. Akiyama, T. Shinohara, K. Matsuoka, W. Oshikawa, ISIJ Int. 53 (2013) 1062–1069.

    Article  Google Scholar 

  13. M. Kuhlmann, O. Schwedler, N. Holtschke, S. Jüttner, Mater. Testing 57 (2015) 977–984.

    Article  Google Scholar 

  14. O. Schwedler, M. Zinke, S. Jüttner, Weld. World 58 (2014) 339–346.

    Article  Google Scholar 

  15. S. Zhang, Y. Huang, B. Sun, Q. Liao, H. Lu, B. Jian, H. Mohrbacher, W. Zhang, A. Guo, Y. Zhang, Mater. Sci. Eng. A 626 (2015) 136–143.

    Article  Google Scholar 

  16. H. Lu, S. Zhang, B. Jian, H. Mohrbacher, A. Guo, Adv. Mater. Res. 1063 (2015) 32–36.

    Article  Google Scholar 

  17. W.J. Chen, P.F. Gao, S. Wang, H.Z. Lu, Z.Z. Zhao, J. Iron Steel Res. Int. 28 (2021) 211–222.

    Article  Google Scholar 

  18. W. Ding, Y. Gong, W. Li, B. Zhu, M.T. Ma, Adv. High Strength Steel Press Hardening (2019) 568–578.

  19. Y.T. Lin, H.L. Yi, Z.Y. Chang, H.C. Lin, H.W. Yen, Front. Mater. (2021) https://doi.org/10.3389/fmats.2020.611390.

    Article  Google Scholar 

  20. Q. Cui, J. Wu, D. Xie, X. Wu, Y. Huang, X. Li, Materials 10 (2017) 721.

    Article  Google Scholar 

  21. C.L. Zhang, Y.Z. Liu, C. Jiang, J.F. Xiao, J. Iron Steel Res. Int. 18 (2011) No. 6, 49–53.

    Article  Google Scholar 

  22. M.H. Ras, P.C. Pistorius, Corros. Sci. 44 (2002) 2479–2490.

    Article  Google Scholar 

  23. N.D. Nam, J.G. Kim, Corros. Sci. 52 (2010) 3377–3384.

    Article  Google Scholar 

  24. P. Zhou, W. Li, X. Jin, J. Electrochem. Soc. 164 (2017) D394–D400.

    Article  Google Scholar 

  25. P. Zhou, W. Li, H. Zhao, X. Jin, Int. J. Hydrogen Energy 43 (2018) I0905–I0914.

    Google Scholar 

  26. T. Zakroczymski, Electrochim. Acta 51 (2006) 2261–2266.

    Article  Google Scholar 

  27. I. Voloshchuk, T. Zakroczymski, Int. J. Hydrogen Energy 37 (2012) 1826–1835.

    Article  Google Scholar 

  28. Q. Liu, Q. Zhou, J. Venezuela, M. Zhang, A. Atrens, Corros. Sci. (2017) 114–138.

  29. P. Zhou, W. Li, X. Jin, J. Electrochem. Soc. 165 (2018) E256–E261.

    Article  Google Scholar 

  30. L. Qinglong, V. Jeffrey, Z. Mingxing, Z. Qingjun, A. Andrej, Corros. Sci. 111 (2016) 770–785.

    Article  Google Scholar 

  31. Q. Liu, A. Atrens, Corros. Sci. 96 (2015) 112–120.

    Article  Google Scholar 

  32. Q. Liu, A.D. Atrens, Z. Shi, K. Verbeken, A. Atrens, Corros. Sci. 87 (2014) 239–258.

    Article  Google Scholar 

  33. G.R. Booker, J. Norbury, Br. J. Appl. Phys. 8 (1957) 109.

    Article  Google Scholar 

  34. X.Y. Han, Wide and Heavy Plate 1 (2006) 011.

    Google Scholar 

  35. M.A.V. Devanathan, Z. Stachurski, Proceedings of the Royal Society of London Series A Mathematical Phys. Sci. 270 (1962) 90–102.

    Google Scholar 

  36. P. Zhou, W. Li, X. Zhu, Y. Li, X. Jin, J. Chen, J. Electrochem. Soc. 163 (2016) D160–D166.

    Article  Google Scholar 

  37. P. Zhou, W. Li, Y. Li, X. Lu, X. Jin, J. Chen, J. Electrochem. Soc. 164 (2017) D75–D81.

    Article  Google Scholar 

  38. Q. Liu, Q.X. Ma, G.Q. Chen, X. Cao, S. Zhang, J.L. Pan, G. Zhang, Q.Y. Shi, Corros. Sci. 138 (2018) 284–296.

    Article  Google Scholar 

  39. Y.L. Wang, Q. Wang, H.J. Liu, C.L. Zeng, Corros. Sci. 109 (2016) 43–49.

    Article  Google Scholar 

  40. A. Turka, G.R. Joshic, M. Gintalase, M. Callisti, P.E.J. Rivera-Díaz-del-Castillo, E.I. Galindo-Nava, Acta Mater. 194 (2020) 118–133.

    Article  Google Scholar 

  41. J.L. Lee, J.Y. Lee, Met. Sci. 17 (1983) 426–432.

    Article  Google Scholar 

  42. D.P. Escobar, E. Wallaert, L. Duprez, A. Atrens, K. Verbeken, Met. Mater. Int. 19 (2013) 741–748.

    Article  Google Scholar 

  43. A. Laureys, L. Claeys, T. De Seranno, T. Depover, E. Van den Eeckhout, R. Petrov, K. Verbeken, Mater. Charact. 144 (2018) 22–34.

    Article  Google Scholar 

  44. J. Lee, T. Lee, Y.J. Kwon, D.J. Mun, J.Y. Yoo, C.S. Lee, Met. Mater. Int. 22 (2016) 364.

    Article  Google Scholar 

  45. J. Li, J. Wu, Z. Wang, S. Zhang, X. Wu, Y. Huang, X. Li, Int. J. Hydrogen Energy 42 (2017) 22175–22184.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support of the National Key R&D Program of China (No. 2021YFB3702401) and National Natural Science Foundation of China (U1937601). Besides, this research was supported by the Tescan China and Ma’anshan Steel Company.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng-wei Zhou or Wei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Pw., Yan, Zy., Wang, K. et al. The influence of adding niobium and vanadium on hydrogen diffusion in 22MnB5 hot stamping steel. J. Iron Steel Res. Int. 30, 2031–2042 (2023). https://doi.org/10.1007/s42243-023-00913-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00913-9

Keywords

Navigation