Skip to main content
Log in

Effect of vanadium on hydrogen embrittlement susceptibility of high-strength hot-stamped steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Based on the chemical composition of traditional hot-stamped steel (e.g., 22MnB5 and 30MnB5), Nb and V microalloying elements are added into 30MnB5 steel to meet the requirements of ultra-high strength, excellent ductility and potent resistance to hydrogen embrittlement (HE) at the same time. The influence of hot-stamped steel on HE was studied by conducting a hydrogen permeation method and pre-charged hydrogen slow strain rate test. Meanwhile, the experimental steel microstructures and corresponding fracture surfaces are observed and analyzed to characterize HE behavior. The results show that a finer microstructure, a lower apparent diffusion coefficient of hydrogen and a smaller percentage of strength and plasticity reduction are obtained due to the addition of the vanadium element into hot-stamped steel. Compared to the V free experimental steel, the steel with 0.14 wt.% V has a large number of dispersive precipitates and more grain boundary areas, which makes hydrogen atoms dispersedly distribute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Karbasian, A.E. Tekkaya, J. Mater. Process. Technol. 210 (2010) 2103–2118.

    Article  Google Scholar 

  2. M. Merklein, M. Wieland, M. Lechner, S. Bruschi, A. Ghiotti, J. Mater. Process. Technol. 228 (2016) 11–24.

    Article  Google Scholar 

  3. M. Naderi, M. Ketabchi, M. Abbasi, W. Bleckb, J. Mater. Process. Technol. 211 (2011) 1117–1125.

    Article  Google Scholar 

  4. D.W. Fan, S.K. Han, B.C. De Cooman, Steel Res. Int. 80 (2009) 241–248.

    Google Scholar 

  5. X.F. Li, J. Zhang, Y.F. Wang, B. Li, P. Zhang, X.L. Song, Mater. Sci. Eng. A 641 (2015) 45–53.

    Article  Google Scholar 

  6. M.B. Djukic, V.S. Zeravcic, G. Bakic, A. Sedmak, B. Rajicic, Procedia Mater. Sci. 3 (2014) 1167–1172.

    Google Scholar 

  7. X.L. Zhao, Y.J. Zhang, W.J. Hui, C.Y. Wang, H. Dong, J. Iron Steel Res. 31 (2019) 837–847.

    Google Scholar 

  8. X.F. Li, J. Zhang, S.C. Shen, Y.F. Wang, X.L. Song, Mater. Sci. Eng. A 682 (2017) 359–369.

    Article  Google Scholar 

  9. L. Jemblie, V. Olden, O.M. Akselsen, Int. J. Hydrogen Energy 42 (2017) 11980–11995.

    Article  Google Scholar 

  10. M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Acta Mater. 70 (2014) 174–187.

    Article  Google Scholar 

  11. Y. Han, J.J. Shi, L. Xu, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 530 (2011) 643–651.

    Article  Google Scholar 

  12. M.H. Cai, Z. Li, Q. Chao, P.D. Hodgson, Metall. Mater. Trans. A 45 (2014) 5624–5634.

    Article  Google Scholar 

  13. S.Q. Zhang, Y.H. Huang, B.T. Sun, Q.L. Liao, H.Z. Lu, B. Jian, H. Mohrbacher, W. Zhang, A.M. Guo, Y. Zhang, Mater. Sci. Eng. A 626 (2015) 136–143.

    Article  Google Scholar 

  14. Y.S. Chen, D. Haley, S.S.A. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A.J. Bagot, M.P. Moody, Science 355 (2017) 1196–1199.

    Article  Google Scholar 

  15. X.D. Tan, Y.B. Xu, X.L. Yang, Z.Q. Liu, D. Wu, Mater. Sci. Eng. A 594 (2014) 149–160.

    Article  Google Scholar 

  16. T.Y. Hsu, X.J. Jin, Y.H. Rong, J. Alloy. Compd. 577 (2013) S568–S571.

    Article  Google Scholar 

  17. A. Shibata, S. Daido, D. Terada, N. Tsuji, Mater. Trans. 54 (2013) 1570–1574.

    Article  Google Scholar 

  18. S.W. Seo, G.S. Jung, J.S. Lee, C.M. Bae, H.K.D.H. Bhadeshia, D.W. Suh, Mater. Sci. Technol. 31 (2015) 436–442.

    Article  Google Scholar 

  19. L.F. Lv, L.M. Fu, Y.L. Sun, A.D. Shan, Mater. Sci. Eng. A 731 (2018) 369–376.

    Article  Google Scholar 

  20. J. Li, J.S. Wu, Z.H. Wang, S.Q. Zhang, X.G. Wu, Y.H. Huang, X.G. Li, Int. J. Hydrogen Energy 42 (2017) 22175–22184.

    Article  Google Scholar 

  21. L.F. Li, B. Song, J. Cheng, Y.H. Yang, Z. Liu, Mater. Corros. 69 (2018) 590–600.

    Article  Google Scholar 

  22. L.F. Li, B. Song, J. Cheng, Z.B. Yang, Z.Y. Cai, Int. J. Hydrogen Energy 43 (2018) 17353–17363.

    Article  Google Scholar 

  23. S.Q. Zhang, E. Fan, J.F. Wan, J. Liu, Y.H. Huang, X.G. Li, Corros. Sci. 139 (2018) 83–96.

    Article  Google Scholar 

  24. D.J. Kong, Y.Z. Wu, D. Long, J. Iron Steel Res. Int. 20 (2013) No. 1, 40–46.

    Article  Google Scholar 

  25. G.W. Yang, X.J. Sun, Z.D. Li, X.X. Li, Q.L. Yong, Mater. Des. 50 (2013) 102–107.

    Article  Google Scholar 

  26. W.J. Chen, S. Wang, Z.Z. Zhao, J.T. Liang, J. Guo, Mater. Res. Express 6 (2019) 1065e3.

  27. X. Zhu, W. Li, H.S. Zhao, L. Wang, X.J. Jin, Int. J. Hydrogen Energy 39 (2014) 13031–13040.

    Article  Google Scholar 

  28. M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, I.M. Robertson, Acta Mater. 59 (2011) 1601–1606.

    Article  Google Scholar 

  29. X.F. Li, J. Zhang, E. Akiyama, Y.F. Wang, Q.Z. Li, Int. J. Hydrogen Energy 43 (2018) 17898–17911.

    Article  Google Scholar 

  30. B.S. Kumar, V. Kain, M. Singh, B. Vishwanadh, Mater. Sci. Eng. A 700 (2017) 140–151.

    Article  Google Scholar 

  31. W.K. Kim, S.U. Koh, B.Y. Yang, K.Y. Kim, Corros. Sci. 50 (2008) 3336–3342.

    Article  Google Scholar 

  32. E. Lunarska, Y. Ososkov, Y. Jagodzinsky, Int. J. Hydrogen Energy 22 (1997) 279–284.

    Article  Google Scholar 

  33. Z.Z. Zhao, J.T. Liang, A.M. Zhao, J.H. Liang, D. Tang, Y.P. Gao, J. Alloy. Compd. 691 (2017) 51–59.

    Article  Google Scholar 

  34. F. Peng, Y.B. Xu, X.L. Gu, Y. Wang, X.D. Liu, J.P. Li, Mater. Sci. Eng. A 723 (2018) 247–258.

    Article  Google Scholar 

  35. Q.L. Yong, Secondary phase in the steel, Metallurgical Industry Press, Beijing, China, 2006.

    Google Scholar 

  36. K. Takasawa, R. Ikeda, N. Ishikawa, R. Ishigaki, Int. J. Hydrogen Energy 37 (2012) 2669–2675.

    Article  Google Scholar 

  37. S. Bechtle, M. Kumar, B.P. Somerday, M. Launey, R.O. Ritchie, Acta Mater. 57 (2009) 4148–4157.

    Article  Google Scholar 

  38. B.A. Szost, R.H. Vegter, P.E.J. Rivera-Díaz-del-Castillo, Mater. Des. 43 (2013) 499–506.

    Article  Google Scholar 

  39. A.J. Haq, K. Muzaka, D.P. Dunne, A. Calka, E.V. Pereloma, Int. J. Hydrogen Energy 38 (2013) 2544–2556.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant No. 51574028) and the Development Program of Thirteenth Five-year Plan Period (Grant No. 2017YFB0304400) for Grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-zhi Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Wj., Gao, Pf., Wang, S. et al. Effect of vanadium on hydrogen embrittlement susceptibility of high-strength hot-stamped steel. J. Iron Steel Res. Int. 28, 211–222 (2021). https://doi.org/10.1007/s42243-020-00469-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00469-y

Keywords

Navigation