Skip to main content

Advertisement

Log in

Effects of Sintering Additives on Microstructure and Mechanical Properties of Hot-Pressed α-SiC Ceramics

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, α-SiC ceramics with aluminum or yttria sintering additives ranging from 1.0 to 4.0 wt pct were prepared by hot pressing, and the effect of sintering additives on the microstructure and mechanical properties of SiC ceramics was investigated. Specimens with Al additive exhibited fully dense microstructure with relative density > 99.4 pct. However, the relative density of specimens with Y2O3 decreases constantly from 99.5 to 95.7 pct as Y2O3 content increases, which is possibly due to the formation of gaseous phase and evaporation of volatile compounds resulting from the chemical reaction between SiC matrix and Y2O3 additive. X-ray diffraction (XRD) and Raman spectra results showed that Al addition leads to the transformation from 6H to 4H polytypes, and the transformation degree increases as increasing the Al content, while no obvious polytype transformation is observed for specimens with Y2O3 additive. Scanning electron microscopy (SEM) observations revealed that specimens with Y2O3 are composed of equiaxed grains with average size about 1.0 μm, whereas the specimens with Al additive exhibit larger grain size with partly elongated grain structure. Additionally, it is found that the grain growth of specimens with Al addition is accompanied by the polytype transformation. Further analysis revealed that, for specimens with Al additive, enhanced grain size and formation of elongated of SiC grains lead to an improvement in fracture toughness from 5.7 to 7.1 MPa m1/2 but a slight decline in flexural strength from 706 to 632 MPa. The crack deflection and bridging as well as undesirable stress effects related to the large elongated grains are responsible for the variation in mechanical properties. In the case of SiC sintered with Y2O3, there are obvious declines in flexural strength and fracture toughness from 714 to 492 MPa and from 5.9 to 3.4 MPa m1/2, respectively, which are mainly attributed to the increased porosity. The impact of Al and Y2O3 on the microstructure and mechanical properties of SiC ceramics was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Ghezelbash, A. Zeinali, N. Ehsani, and H.R. Baharvandi: J. Aust. Ceram. Soc., 2019, vol. 55, pp. 903–11.

    Article  CAS  Google Scholar 

  2. K.J. Kim, K.Y. Lim, and Y.W. Kim: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 4401–6.

    Article  CAS  Google Scholar 

  3. A. Noviyanto and D.H. Yoon: Curr. Appl. Phys., 2013, vol. 13, pp. 287–92.

    Article  Google Scholar 

  4. B.Z. Su, H.Q. Liang, G.L. Liu, Z.R. Huang, X.J. Liu, Z.M. Chen, and D.Y.W. Yu: J. Eur. Ceram. Soc., 2018, vol. 38, pp. 2289–96.

    Article  CAS  Google Scholar 

  5. A. Noviyanto, S.W. Han, H.W. Yu, and D.H. Yoon: J. Eur. Ceram. Soc., 2013, vol. 33, pp. 2915–23.

    Article  CAS  Google Scholar 

  6. M. Martínez, C.R. Miguel, D.R. Arturo, O.L. Angel, and G. Fernando: J. Am. Ceram. Soc., 2007, vol. 90, pp. 163–9.

    Article  Google Scholar 

  7. K. Negita: J. Am. Ceram. Soc., 1986, vol. 69, pp. C308–10.

    Article  Google Scholar 

  8. A. Noviyanto and D.H. Yoon: Mater. Res. Bull., 2011, vol. 46, pp. 1186–91.

    Article  CAS  Google Scholar 

  9. P. Sahani, S.K. Karak, B. Mishra, D. Chakravarty, and D. Chaira: Int. J. Refract. Met. Hard Mater.., 2016, vol. 57, pp. 31–41.

    Article  CAS  Google Scholar 

  10. N. Zhang, H.Q. Ru, Q.K. Cai, and X.D. Sun: Mater. Sci. Eng. A., 2008, vol. 486, pp. 262–6.

    Article  Google Scholar 

  11. J.H. She and K. Ueno: Mater. Res. Bull., 1999, vol. 34, pp. 1629–36.

    Article  CAS  Google Scholar 

  12. D. Cheong, J. Kim, and S.J.L. Kang: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 1321–7.

    Article  Google Scholar 

  13. Y.W. Kim, S.H. Jang, T. Nishimura, S.Y. Choi, and S.D. Kim: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 4449–55.

    Article  CAS  Google Scholar 

  14. Y.W. Kim, K.J. Kim, H.C. Kim, N.H. Cho, and K.Y. Lim: J. Am. Ceram. Soc., 2011, vol. 94, pp. 991–3.

    Article  CAS  Google Scholar 

  15. K.Y. Lim, Y.W. Kim, and K.J. Kim: Ceram. Int., 2014, vol. 40, pp. 10577–82.

    Article  CAS  Google Scholar 

  16. S. Gupta, S.K. Sharma, B.V.M. Kumar, and Y.W. Kim: Ceram. Int., 2015, vol. 41, pp. 14780–9.

    Article  CAS  Google Scholar 

  17. J. Ihle, M. Herrmann, and J. Adler: J. Eur. Ceram. Soc., 2005, vol. 25, pp. 997–1003.

    CAS  Google Scholar 

  18. K. Biswas: Mater. Sci. Forum., 2009, vol. 624, pp. 71–89.

    Article  CAS  Google Scholar 

  19. D. Chen, M.E. Sixta, X.F. Zhang, L.C. De Jonghe, and R.O. Ritchie: Acta Mater., 2000, vol. 48, pp. 4599–608.

    Article  CAS  Google Scholar 

  20. H. Tanaka, H.N. Yoshimura, S. Otani, Y. Zhou, and M. Toriyama: J. Am. Ceram. Soc., 2000, vol. 83, pp. 226–8.

    Article  CAS  Google Scholar 

  21. M. Moslemi, M. Razavi, M. Zakeri, M.R. Rahimipour, and M. Schreiner: Phase. Transit., 2018, vol. 91, pp. 733–41.

    Article  CAS  Google Scholar 

  22. W. Guo, H. Xiao, J. Liu, J. Liang, P. Gao, and G. Zeng: Ceram. Int., 2015, vol. 41, pp. 11117–24.

    Article  CAS  Google Scholar 

  23. Z. Li, W. Zhou, X. Su, F. Luo, D. Zhu, and P. Liu: J. Am. Ceram. Soc., 2008, vol. 91, pp. 2607–10.

    Article  CAS  Google Scholar 

  24. L.U. Ogbuji, T.E. Mitchell, and A.H. Heuer: J. Am. Ceram. Soc., 1981, vol. 64, pp. 91–9.

    Article  CAS  Google Scholar 

  25. Y. Zhou, H. Tanaka, S. Otani, and Y. Bando: J. Am. Ceram. Soc., 1999, vol. 82, pp. 1959–64.

    Article  CAS  Google Scholar 

  26. S.I. Nakashima, M. Higashihira, K. Maeda, and H. Tanaka: J. Am. Ceram. Soc., 2003, vol. 86, pp. 823–9.

    Article  CAS  Google Scholar 

  27. K.J. Kim, K.Y. Lim, Y.W. Kim, M.J. Lee, and W.S. Seo: J. Eur. Ceram. Soc., 2014, vol. 34, pp. 1695–701.

    Article  CAS  Google Scholar 

  28. Z.A. Yaşar and R.A. Haber: Materials., 2020, vol. 13, p. 3768.

    Article  Google Scholar 

  29. Y.W. Kim and J.G. Lee: J. Mater. Sci., 1992, vol. 27, pp. 4746–50.

    Article  CAS  Google Scholar 

  30. J.K. Lee, J.G. Park, E.G. Lee, D.S. Seo, and Y. Hwang: Mater. Lett., 2002, vol. 57, pp. 203–8.

    Article  CAS  Google Scholar 

  31. T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M.A. Einarsrud: J. Am. Ceram. Soc., 1997, vol. 80, pp. 1047–52.

    Article  CAS  Google Scholar 

  32. S.K. Lee and C.H. Kim: J. Am. Ceram. Soc., 1994, vol. 77, pp. 1655–8.

    Article  Google Scholar 

  33. K. Raju and D.H. Yoon: Ceram. Int., 2016, vol. 42, pp. 17947–62.

    Article  CAS  Google Scholar 

  34. J.C. Viala, P. Fortier, and J. Bouix: J. Mater. Sci., 1990, vol. 25, pp. 1842–50.

    Article  CAS  Google Scholar 

  35. C. Chen, X. Han, H. Shen, Y. Tan, H. Zhang, Y. Qin, and S.M. Peng: Ceram. Int., 2020, vol. 46, pp. 23173–9.

    Article  CAS  Google Scholar 

  36. Y. Huang, D. Jiang, X. Zhang, Z. Liao, and Z. Huang: J. Eur. Ceram. Soc., 2018, vol. 38, pp. 4329–37.

    Article  CAS  Google Scholar 

  37. Z.N. Wing: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 1373–8.

    Article  CAS  Google Scholar 

  38. Y. Hirata, N. Suzue, N. Matsunaga, and S. Sameshima: J. Eur. Ceram. Soc., 2010, vol. 30, pp. 1945–54.

    Article  CAS  Google Scholar 

  39. Y.K. Seo, Y.W. Kim, K.J. Kim, and W.S. Seo: J. Eur. Ceram. Soc., 2016, vol. 36, pp. 3879–87.

    Article  CAS  Google Scholar 

  40. H.J. Yeom, Y.W. Kim, and K.J. Kim: J. Eur. Ceram. Soc., 2015, vol. 35, pp. 77–86.

    Article  CAS  Google Scholar 

  41. Y.H. Kim, Y.W. Kim, K.Y. Lim, and S.J. Lee: J. Eur. Ceram. Soc., 2019, vol. 39, pp. 144–9.

    Article  CAS  Google Scholar 

  42. G.D. Kim and Y.W. Kim: J. Eur. Ceram. Soc., 2021, vol. 41, pp. 3980–90.

    Article  CAS  Google Scholar 

  43. G.D. Zhan, M. Mitomo, and Y.W. Kim: J. Am. Ceram. Soc., 1999, vol. 82, pp. 2924–6.

    Article  CAS  Google Scholar 

  44. R. Sedlák, A. Koval Líková, V. Girman, E. Múdra, P. Rutkowski, A. Dubiel, and J. Dusza: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 4307–14.

    Article  Google Scholar 

  45. C.S. Lee, Y.W. Kim, D.H. Cho, H.B. Lee, and H.J. Lim: Ceram. Int., 1998, vol. 24, pp. 489–95.

    Article  CAS  Google Scholar 

  46. Y.W. Kim, M. Mitomo, and H. Hirotsuru: J. Am. Ceram. Soc., 1995, vol. 78, pp. 3145–8.

    Article  CAS  Google Scholar 

  47. Y.W. Kim, M. Mitomo, and H. Hirotsuru: J. Am. Ceram. Soc., 1997, vol. 80, pp. 99–105.

    Article  CAS  Google Scholar 

  48. S. Kultayeva and Y.W. Kim: Ceram. Int., 2020, vol. 46, pp. 19264–73.

    Article  CAS  Google Scholar 

  49. J.K. Li, X.P. Ren, Y.L. Zhang, and H.L. Hou: J. Mater. Res. Technol., 2020, vol. 9, pp. 33–41.

    Article  Google Scholar 

  50. H. Liang, X. Yao, Z. Huang, Y. Zeng, and B. Su: J. Eur. Ceram. Soc., 2016, vol. 36, pp. 1863–71.

    Article  CAS  Google Scholar 

  51. Y.T. Liu, Z. Chen, R.Z. Liu, J. Zhao, and M. Liu: Ceram. Int., 2020, vol. 46, pp. 24504–11.

    Article  CAS  Google Scholar 

  52. Z.W. Qin, Y.M. Xie, X.C. Meng, D.L. Qian, J.C. Li, C. Li, J. Cao, L. Wan, and Y.X. Huang: ACS Appl. Mater. Interfaces., 2021, vol. 13, pp. 34385–96.

    Article  CAS  Google Scholar 

  53. Y.M. Xie, X.C. Meng, Y.L. Li, D.X. Mao, L. Wang, and Y.X. Huang: Compos. Commun., 2021, vol. 26, p. 100776.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China under Grant no. 11505247, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant no. XDA21010202, the Program of the Innovation Center of Nuclear Materials for National Defense Industry of China under Grant no. ICNM-2021-ZH-09 and the Joint Funds of the National Natural Science Foundation of China under grant no. U1832206. The authors sincerely thank Dr. Lijuan Niu and Dr. Shufen Li of IMPCAS for sample polishing and XRD characterization.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tielong Shen or Youfu Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Qin, Z., Chai, J. et al. Effects of Sintering Additives on Microstructure and Mechanical Properties of Hot-Pressed α-SiC Ceramics. Metall Mater Trans A 53, 1188–1199 (2022). https://doi.org/10.1007/s11661-021-06554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06554-5

Navigation