Skip to main content
Log in

Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An experimental investigation was carried out on the Al-C-Si ternary system under atmospheric pressure and at temperatures up to 1900 K. From the results obtained, a thermodynamic model based on stable and metastable phase equilibria in the Al-C-Si ternary system was set up in order to provide a general description of the chemical interaction between aluminium and SiC. According to this model, aluminium and SiC are in thermodynamic equilibrium at every temperature lower than 923 K. At 923±3 K, i.e. at 10 K below the melting point of pure aluminium, a quasiperitectic invariant transformation occurs in the Al-C-Si system. In this transformation, solid aluminium reacts with SiC to give Al4C3 and a ternary (Al-C-Si) liquid phase. The carbon content of this liquid phase is very low; its silicon content is 1.5±0.4 at%. From 923 to about 1620 K, aluminium partially reacts with an excess of SiC, leading to a metastable monovariant equilibrium involving SiC, Al4C3 and an aluminium-rich (Al-C-Si) ternary liquid phase, L. The carbon content of this liquid phase, L, remains very low whereas its silicon content increases with temperature from 1.5±0.4 at% at 923 K to 16.5±1 at% at 1620 K. In the temperature range 1670 to 1900 K, two other three-phased monovariant equilibria can be reached by reacting aluminium and SiC. These equilibria involve on the one hand SiC, Al4SiC4 and a liquid phase, L′, and on the other hand, Al4SiC4, Al4C3 and a liquid phase, L″. The former is a stable equilibrium, the latter is a metastable one. At temperatures higher than about 2200 K, the latter metastable equilibrium is replaced by two monovariant stable phase equilibria including the ternary carbide Al8SiC7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Iseki, T. Kameda andT. Maruyama,J. Mater. Sci. 19 (1984) 1692.

    Google Scholar 

  2. S. V. Nair, J. K. Tien andR. C. Bates.Int. Met. Rev. 30 (1985) 275.

    Google Scholar 

  3. S. Yajima, K. Okamura, J. Tanaka andT. Hayase,J. Mater. Sci. 16 (1981) 3033.

    Google Scholar 

  4. S. Dermarkar.Metals and Materials 2 (1986) 144.

    Google Scholar 

  5. J. C. Viala andJ. Bouix,Mater. Chem. Phys. 11 (1984) 101.

    Google Scholar 

  6. F. Delannay, L. Froyen andA. Deruyttere,J. Mater. Sci. 22 (1987) 1.

    Google Scholar 

  7. R. Naslain. in “Proceedings of the 1st European Conference on Composite Materials”, Bordeaux. France. 24 to 27 September 1985, edited by A. R. Bunsell, P. Lamicq and A. Massiah (European Association for Composite Materials, Bordeaux, 1985) p. 34.

    Google Scholar 

  8. T. Choh andT. Oki.Mater. Sci. Technol. 3 (1987) 1.

    Google Scholar 

  9. V. Laurent, D. Chatain andN. Eustathopoulos.J. Mater. Sci. 22 (1987) 244.

    Google Scholar 

  10. J. P. Rocher, J. M. Quenisset andR. Naslain,J. Mater. Sci. Lett. 4 (1985) 1527.

    Google Scholar 

  11. K. Prewo andG. McCarthy,J. Mater. Sci. 7 (1972) 919.

    Google Scholar 

  12. J. C. Viala, P. Fortier, C. Bernard andJ. Bouix.C.R. Acad. Sci. Paris. Ser. 2 299 (1984) 777.

    Google Scholar 

  13. J. C. Viala, P. Fortier, C. Bernard andJ. Bouix, in “Proceedings of the 1st European Conference on Composite Materials”, Bordeaux, France, 24 to 27 September 1985, edited by A. R. Bunsell, P. Lamicq and A. Massiah (European Association for Composite Materials, Bordeau. 1985) p. 583.

    Google Scholar 

  14. V. M. Bermudez,Appl. Phys. Lett. 42 (1983) 70.

    Google Scholar 

  15. L. Porte,J. Appl. Phys. 60 (1986) 635.

    Google Scholar 

  16. K. Kannikeswaran andR. Y. Lin,J. Met. 39 (1987) 17.

    Google Scholar 

  17. D. J. Lloyd, H. Lagace, A. McLeod andP. L. Morris,Mater. Sci. Eng. A107 (1989) 73.

    Google Scholar 

  18. J. C. Viala, P. Fortier, B. Bonnetot andJ. Bouix,Mater. Res. Bull. 21 (1986) 387.

    Google Scholar 

  19. J. Ruska, L. J. Gauckler andC. Petzow,Sci. Ceram. 9 (1977) 332.

    Google Scholar 

  20. J. C. Viala, P. Fortier andJ. Bouix,Ann. Chim. Fr. 11 (1986) 235.

    Google Scholar 

  21. Z. Inoue, Y. Inomata, H. Tanaka andH. Kawabata,J. Mater. Sci. 15 (1980) 575.

    Google Scholar 

  22. P. Dorner, Doctoral Thesis, Stuttgart (RFA), 22 June 1982.

  23. V. J. Barczac,J. Amer. Ceram. Soc. (1961) 299.

  24. G. Schneider, L. J. Gauckler, G. Petzow andA. Zangvil,ibid. 62 (1979) 574.

    Google Scholar 

  25. J. Schoennahl, B. Willer andM. Daire,J. Solid. State Chem. 52 (1984) 163.

    Google Scholar 

  26. B. L. Kidwell, L. L. Oden andR. A. McCune,J. Appl. Crystallogr. 17 (1984) 481.

    Google Scholar 

  27. L. L. Oden andR. A. McCune,Metal. Trans. 18A (1987) 2005.

    Google Scholar 

  28. R. P. Elliott, in “Constitution of Binary Alloys”, 1st Supplement (McGraw-Hill, New York, 1965) p. 55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viala, J.C., Fortier, P. & Bouix, J. Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide. J Mater Sci 25, 1842–1850 (1990). https://doi.org/10.1007/BF01045395

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01045395

Keywords

Navigation