Skip to main content

Advertisement

Log in

Improvement toughness of SiC ceramic by adding Cr2O3 and annealing process

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this research, the effect of different amounts of Cr2O3 (2.5, 5, 7.5, and 10 wt.%) and sintering temperature (1850, 1900, and 1950 °C) on the sinterability and mechanical properties of liquid-phase sintered SiC-matrix composites was studied. First, raw materials were ground for 3 h using a planetary mill whose rotational speed was 180 rpm. The process of pressing the samples was completed using uniaxial pressing with the applied pressure of 90 MPa. Finally, the samples were sintered under an argon atmosphere at various temperatures for 1.5 h. In the end, the best sintered sample was annealed at 2000°C for 2 h. The phases, microstructure, and chemical composition of the samples were studied using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM), respectively. The results suggested that the composite that contained 5 wt.% Cr2O3 and that was sintered at 1900 °C exhibited the best properties. The relative density, microhardness, elastic modulus, flexural strength, indentation fracture resistance, and brittleness index were 97.45%, 27.50 GPa, 395 GPa, 549 MPa, 6.2 MPa m1/2, and 282.58 ×10−6 m−1 respectively. At 1850 °C and 1950 °C, the best mechanical properties were acquired for the samples containing 5 wt.% Cr2O3. According to microscopic images, the formation of elongated grains and the activation of crack deflection as well as crack bridging mechanisms were the most significant mechanisms enhancing the toughness of these composites. The results showed that the sintered sample at 1900 °C, containing 5% additive and annealed at 2000 °C for 2 h, reached the highest fracture toughness (6.92 MPa m1/2). The microscopic images showed that the matrix grains of the as-annealed samples were elongated. There were signs of transgranular fracture at the cross-section of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lopez, O., Ortiz, A., Guiberteau, F., Padture, N.: Microstructural design of sliding wear sliding wear-resistant liquid-phase-sintered SiC: an overview. J. Eur. Ceram. Soc. 27, 3351–3357 (2007)

    Article  CAS  Google Scholar 

  2. Janney, M.: Mechanical properties and oxidation behavior of a hot pressed SiC-15 vol.% TiB2 composite. Am. Ceram. Soc. Bull. 66, 322–324 (1987)

    CAS  Google Scholar 

  3. H. Chin, K. Cheong, A. Ismail, A review on die attach materials for SiC-based high-temperature power devices, (2010).

  4. Noviyanto, A., Yoon, D.: One component metal oxide sintering additive for β-SiC based on thermodynamic calculation and experimental observations. Met. Mater. Int. 1, 63–68 (2012)

    Article  CAS  Google Scholar 

  5. Noviyanto, A., Yoon, D.: Metal oxide additives for the sintering of silicon carbide: reactivity and densification. Curr. Appl. Phys. 13, 287–292 (2013)

    Article  Google Scholar 

  6. Ortiz, A.L., Borrero-Lopez, O., Quadir, M.Z., Guiberteau, F.: A route for the pressureless liquid-phase sintering of SiC with low additive content for improved sliding-wear resistance. J. Eur. Ceram. Soc. 32, 965–976 (2012)

    Article  CAS  Google Scholar 

  7. Ribeiro, S., Genova, L.A., Ribeiro, G.C., Oliveira, M.R., Bressiani, A.H.A.: Effect of heating rate on the shrinkage and microstructure of liquid phase sintered SiC ceramics. Ceram. Int. 42, 17398–17404 (2016)

    Article  CAS  Google Scholar 

  8. Khodaei, M., Yaghobizadeh, O., Baharvandi, H.R., Dashti, A.: Effects of different sintering methods on the properties of SiC-TiC, SiC-TiB2 composites. Int. J. Refract. Met. H. 70, 19–31 (2018)

    Article  CAS  Google Scholar 

  9. Magnani, G., Beltrami, G.: Gl. Minoccari, L. pilotti, Pressureless sintering and properties of αSiC-B4C composite. J. Eur. Ceram. Soc. 21, 633–638 (2001)

    Article  CAS  Google Scholar 

  10. Ribeiro, S., Ribeiro, G.C.: Mrego de oliveira, Properties of SiC ceramics sintered via liquid phase using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as additives: a comparative study. Mater. Res. 18, 525–529 (2015)

    Article  CAS  Google Scholar 

  11. Khodaei, M., Yaghobizadeh, O., Shahraki, A.A., Esmaeeli, S.: Investigation of the effect of Al2O3–Y2O3–CaO (AYC) additives on sinterability, microstructure and mechanical properties of SiC matrix composites: a review. Int. J. Refract. Met. H. 78, 9–26 (2018)

    Article  CAS  Google Scholar 

  12. Suzuki, K., Sasaki, M.: Effects of sintering atmosphere on grain morphology of liquid phase-sintered SiC with Al2O3 additions. J. Eur. Ceram. Soc. 25, 1611–1618 (2005)

    Article  CAS  Google Scholar 

  13. Zhang, J., Jiang, D., Lin, Q., Chen, Z., Huang, Z.: Properties of silicon carbide ceramics from gelcasting and pressureless sintering. Mater. Des. 65, 12–16 (2015)

    Article  CAS  Google Scholar 

  14. Noviyanto, A., Yoon, D.H.: Rare-earth oxide additives for the sintering of silicon carbide. Diam. Relat. Mater. 38, 124–130 (2013)

    Article  CAS  Google Scholar 

  15. Tatarko, P., Lojanova, Š., Dusza, J., Šajgalik, P.: Influence of various rare-earth oxide additives on microstructure and mechanical properties of silicon nitride based nanocomposites. Mater. Sci. Eng. A. 527, 4771–4778 (2010)

    Article  CAS  Google Scholar 

  16. Liang, H., Yao, X., Zhang, J., Liu, X., Huang, Z.: The effect of rare earth oxides on the pressureless liquid phase sintering of α-SiC. J. Eur. Ceram. Soc. 34, 2865–2874 (2014)

    Article  CAS  Google Scholar 

  17. Lopez, O.B., Ortiz, A., Guiberteau, F., Padture, N.: Effect of liquid-phase content on the contact-mechanical properties of liquid-phase-sintered α-SiC. J. Eur. Ceram. Soc. 27, 2521–2527 (2007)

    Article  CAS  Google Scholar 

  18. Magnani, G., Minoccari, G.L., Pilotti, L.: Flexural strength and toughness of liquid phase sintered silicon carbide. Ceram. Int. 26, 495–500 (2000)

    Article  CAS  Google Scholar 

  19. Neher, R., Herrmann, M., Brandt, K., Jaenicke-Roessler, K., Pan, Z., Fabrichnaya, O., Seifert, H.J.: Liquid phase formation in the system SiC, Al2O3, Y2O3. J. Eur. Ceram. Soc. 31, 175–181 (2011)

    Article  CAS  Google Scholar 

  20. Khodaei, M., Yaghobizadeh, O., Alhosseini, S.H.N., Esmaeeli, S., Mousavi, S.R.: The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: a review. J. Eur. Ceram. Soc. 39, 2215–2231 (2019)

    Article  CAS  Google Scholar 

  21. Ihle, J., Herrmann, M., Adler, J.: Phase formation in porous liquid phase sintered silicon carbide: part III: interaction between Al2O3–Y2O3 and SiC. J. Eur. Ceram. Soc. 25, 1005–1013 (2005)

    Article  CAS  Google Scholar 

  22. Lee, S.M., Kim, T.W., Lim, H.J., Kim, C., Kim, Y.W., Lee, K.S.: Mechanical properties and contact damages of nanostructured silicon carbide ceramics. J. Ceram. Soc. Jpn. 115, 304–309 (2007)

    Article  CAS  Google Scholar 

  23. Huang, Z.H., Jia, D.C., Zhou, Y., Wang, Y.J.: Effect of a new additive on mechanical properties of hot-pressed silicon carbide ceramics. Mater. Res. Bull. 37, 933–940 (2002)

    Article  CAS  Google Scholar 

  24. Khodaei, M., Yaghobizadeh, O., Ehsani, N., Baharvandi, H.R.: The effect of TiO2 additive on the electrical resistivity and mechanical properties of pressureless sintered SiC ceramics with Al2O3-Y2O3. Int. J. Refract. Met. H. 76, 141–148 (2018)

    Article  CAS  Google Scholar 

  25. Huang, Z.H., Jia, D.C., Zhou, Y., Liu, Y.G.: A new sintering additive for silicon carbide ceramic. Ceram. Int. 29, 13–17 (2003)

    Article  CAS  Google Scholar 

  26. Zhan, G.D., Ikuhara, Y., Mitomo, M., Xie, R.J., Sakuma, T., Mukherjee, A.K.: Microstructural analysis of liquid-phase-Sintered β-Silicon carbide. J. Am. Ceram. Soc. 85, 430–436 (2002)

    Article  CAS  Google Scholar 

  27. Gu, H., Nagano, T., Zhan, G.D., Mitomo, M.: Dynamic evolution of grain boundary films in liquid-phase-sintered ultrafine silicon carbide material. J. Am. Ceram. Soc. 86, 1753–1760 (2003)

    Article  CAS  Google Scholar 

  28. Lee, S.G., Kim, Y.W., Mitomo, M.: Relationship between microstructure and fracture toughness of toughened silicon carbide ceramics. J. Am. Ceram. Soc. 84, 1347–1353 (2001)

    Article  CAS  Google Scholar 

  29. Khodaei, M., Yaghobizadeh, O., Ehsani, N., Baharvandi, H.R., Dashti, A.: The effect of TiO2 additive on sinterability and properties of SiC-Al2O3-Y2O3 composite system. Ceram. Int. 44, 16535–16542 (2018)

    Article  CAS  Google Scholar 

  30. Foster, D., Thompson, D.P.: The use of MgO as a densification aid for α-SiC. J. Eur. Ceram. Soc. 19, 2823–2831 (1999)

    Article  CAS  Google Scholar 

  31. Gubernat, A., Stobierski, L., Labaj, P.: Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives. J. Eur. Ceram. Soc. 27, 781–789 (2007)

    Article  CAS  Google Scholar 

  32. Zawrah, M.F., Shaw, L.: Liquid-phase sintering of SiC in presence of CaO. Ceram. Int. 30, 721–725 (2004)

    Article  CAS  Google Scholar 

  33. Eom, J.H., Seo, Y.K., Kim, Y.W.: Mechanical and thermal properties of pressureless sintered silicon carbide ceramics with alumina–Yttria–Calcia. J. Am. Ceram. Soc. 99, 1735–1741 (2016)

    Article  CAS  Google Scholar 

  34. Liang, H., Yao, X., Zhang, H., Liu, X., Huang, Z.: In situ toughening of pressureless liquid phase sintered α-SiC byusingTiO2. Ceram. Int. 40, 10699–10704 (2014)

    Article  CAS  Google Scholar 

  35. Ahmoye, D., Krstic, V.D.: Reaction sintering of SiC composites with in situ converted TiO2 to TiC. J. Mater. Sci. 50, 2806–2812 (2015)

    Article  CAS  Google Scholar 

  36. Khodaei, M., Yaghobizadeh, O., Baharvandi, H.R., Alipour Shahrakia, A., Mohammadi, H.: The effect of nano-TiO2 additions on the densification and mechanical properties of SiC-matrix composite. Ceram. Int. (2020)

  37. Guo, W., Jin, Z., Xu, T., Wu, W.: Low–temperature pressureless sintering of SiC ceramics with Al2O3-Y2O3-La2O3 Addition. Key Eng. Mater. 226, 725–728 (2002)

    Article  Google Scholar 

  38. Khodaei, M., Yaghobizadeh, O., Baharvandi, H.R., Esmaeeli, S., Javi, H.: The effect of Cr2O3 additions on sinterability and mechanical properties of liquid-phase sintered SiC ceramics. J. Alloys Compd. 829, 154501 (2020)

    Article  CAS  Google Scholar 

  39. Eom, J.H., Seo, Y.K., Kim, Y.W., Lee, S.J.: Effect of additive composition on mechanical properties of pressureless sintered silicon carbide ceramics sintered with alumina, aluminum nitride and Yttria. Met. Mater. Int. 21, 525–530 (2015)

    Article  CAS  Google Scholar 

  40. Kim, Y.W., Tanaka, H., Mitomo, M., Otani, S.: Influence of powder characteristics on liquid phase sintering of silicon carbide. J. Ceram. Soc. Jpn. 103, 257–261 (1995)

    Article  CAS  Google Scholar 

  41. Gomez, E., Echeberria, J., Iturriza, I., Castro, F.: Liquid phase sintering of SiC with additions of Y2O3, Al2O3 and SiO2. J. Eur. Ceram. Soc. 24, 2895–2903 (2004)

    Article  CAS  Google Scholar 

  42. He, Z., Tu, R., Katsui, H., Goto, T.: Synthesis of SiC/SiO2 core–shell powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering. Ceram. Int. 39, 2605–2610 (2013)

    Article  CAS  Google Scholar 

  43. Cho, K.S., Choi, H.J., Lee, J.G., Kim, Y.W.: Microstructure and fracture toughness of in-situ toughened SiC-TiC composites. J. Mater. Sci. Lett. 17, 1081–1084 (1998)

    Article  CAS  Google Scholar 

  44. Cho, K.S., Kim, Y.W., Choi, H.J., Lee, J.G.: In situ-toughened silicon carbide-titanium carbide composites. J. Am. Ceram. Soc. 79, 1711–1713 (1996)

    Article  CAS  Google Scholar 

  45. Cho, K.S., Kim, Y.W., Choi, H.J., Lee, J.G.: SiC-TiC and SiC-TiB2 composites densified by liquid-phase sintering. J. Mater. Sci. 31, 6223–6228 (1996)

    Article  CAS  Google Scholar 

  46. Hui, Y., Lingjie, Z., Xingzhong, G., Xiaoyi, Z., Xiaojian, F.: Pressureless sintering of silicon carbide ceramics containing zirconium diboride. Ceram. Int. 37, 2031–2035 (2011)

    Article  CAS  Google Scholar 

  47. Ahmoye, D., Dusan, D., Krstic, V.D.: Mechanical properties of reaction sintered SiC-TiC composite. Ceram. Int. 44, 14401–14407 (2018)

    Article  CAS  Google Scholar 

  48. Liang, H., Yao, X., Zhang, H., Liu, X., Huang, Z.: The effect of TiC on the liquid phase sintering of SiC ceramics with Al2O3 and Y2O3 additives. Key Eng. Mater. 603, 197–201 (2014)

    Article  CAS  Google Scholar 

  49. Dehghani, H., Khodaei, M., Yaghobizadeh, O., Ehsani, N., Baharvandi, H.R., Alhosseini, S.H.N., Javi, H.: The effect of AlN-Y2O3 compound on properties of pressureless sintered SiC ceramics-A review. Int. J. Refract. Met. H. (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Khodaei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaei, M., Yaghobizadeh, O., Ehsani, N. et al. Improvement toughness of SiC ceramic by adding Cr2O3 and annealing process. J Aust Ceram Soc 57, 1097–1106 (2021). https://doi.org/10.1007/s41779-021-00608-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00608-y

Keywords

Navigation