Skip to main content

Advertisement

Log in

Effect of Gas Pressure on Hydrogen Environment Embrittlement of Carbon Steel A106 in Carbon Monoxide Mixed Hydrogen Gas

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The addition of a small volume fraction of carbon monoxide (CO) gas to pure gaseous H2 potentially mitigates the susceptibility of steel to hydrogen environment embrittlement (HEE). The effect of environmental gas pressure on the mitigation of HEEs by a mixture of H2 and CO was examined in this study. Fracture toughness tests of an ASTM A106 pipe carbon steel were carried out in H2 gas containing CO. The environmental gas pressures at which the fracture toughness tests were conducted were 0.6, 1.0 and 4.0 MPa. The addition of a certain concentration of CO to H2 gas completely prevented HEE. The CO concentration achieving complete HEE prevention increased with an enhancement of the environmental gas pressure. Molecular dynamics (MD) simulations were further conducted to interpret the experimental results based on the interactions of H2 and CO with the Fe surface in conjunction with the effect of gas pressure. The MD simulations revealed that the dissociation rate of dihydrogen molecules to atomic hydrogen on the Fe surface significantly increased with an elevation of the gas pressure, whereas the adsorption rate of CO on the Fe surface was almost independent of the gas pressure. These results suggest that the increase in the gas pressure relatively promotes hydrogen uptake into the material in the presence of CO, which accounts for the experimental results showing that the CO concentration achieving complete HEE prevention increased with the elevation of the gas pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.R. Louthan, G.R. Caskey, J.A. Donovan, and D.E. Rawl: Mater. Sci. Eng., 1972, vol. 10, pp. 357–68.

    Article  CAS  Google Scholar 

  2. D.H. Coleman, B.N. Popov, and R.E. White: J. Appl. Electrochem., 1998, vol. 28, pp. 889–94.

    Article  CAS  Google Scholar 

  3. J. Yamabe, T. Awane, and S. Matsuoka: Int. J. Hydrogen Energy., 2015, vol. 40, pp. 10329–39.

    Article  CAS  Google Scholar 

  4. V. Srikrishnan and P.J. Ficalora: Metall. Trans. A., 1976, vol. 7A, pp. 1669–2175.

    Article  CAS  Google Scholar 

  5. J.D. Frandsen and H.L. Marcus: Metall. Trans. A., 1977, vol. 8A, pp. 265–72.

    Article  CAS  Google Scholar 

  6. K. Kussmaul, P. Deimel, H. Fischer, and E. Sattler: Int. J. Hydrogen Energy., 1998, vol. 23, pp. 577–82.

    Article  CAS  Google Scholar 

  7. J.H. Holbrook, H.J. Cialone, E.W. Collings, E.J. Drauglis, P.M. Scott, and M.E. Mayfield: in Gaseous hydrogen embrittlement of materials in energy technologies, vol. 2, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing Limited, Cambridge, 2012, pp. 129–53.

    Chapter  Google Scholar 

  8. B.P. Somerday, P. Sofronis, K.A. Nibur, C. San Marchi, and R. Kirchheim: Acta Mater., 2013, vol. 61, pp. 6153–70.

    Article  CAS  Google Scholar 

  9. R. Komoda, M. Kubota, A. Staykov, P. Ginet, F. Barbier, and J. Furtado: Fatigue Fract. Eng. Mater. Struct., 2019, vol. 42, pp. 1387–401.

    Article  CAS  Google Scholar 

  10. R. Komoda, K. Yamada, M. Kubota, P. Ginet, F. Barbier, J. Furtado, and L. Prost: Int. J. Hydrogen Energy., 2019, vol. 44, pp. 29007–16.

    Article  CAS  Google Scholar 

  11. R. Komoda, M. Kubota, S. Yoshida, A. Staykov, P. Ginet, F. Barbier and J. Furtado, Proceedings of the Twenty-eight International Ocean and Polar Engineering Conference, 2018, pp. 236-42.

  12. A. Staykov, J. Yamabe, and B.P. Somerday: Int. J. Quantum Chem., 2014, vol. 114, pp. 626–35.

    Article  CAS  Google Scholar 

  13. N. Moody, S.L. Robinson, and W.M. Garrison Jr.: Res Mech., 1990, vol. 30, pp. 143–206.

    CAS  Google Scholar 

  14. K.A. Nibur, B.P. Somerday, C. San Marchi, J.W. Foulk, M. Dadfarnia, P. Sofronis and G.A. Hayden, Sandia Report, 2010, Sand2010-4633.

  15. Y. Kondo and M. Kubota: J. Jpn. Soc. Mater. Sci., 2011, vol. 60, pp. 898–904.

    Article  CAS  Google Scholar 

  16. A. Macadre, M. Artamonov, S. Matsuoka, and J. Furtado: Eng. Fract. Mech., 2011, vol. 78, pp. 3196–211.

    Article  Google Scholar 

  17. A. Staykov, R. Komoda, M. Kubota, P. Ginet, F. Barbier, and J. Furtado: J. Phys. Chem. C., 2019, vol. 123, pp. 30265–73.

    Article  CAS  Google Scholar 

  18. D.P. Williams and H.G. Nelson: Metall. Trans., 1970, vol. 1, pp. 63–8.

    CAS  Google Scholar 

  19. H. Barthélém: Int. J. Hydrogen Energy., 2011, vol. 36, pp. 2750–8.

    Article  Google Scholar 

  20. J. Yamabe, M. Yoshikawa, H. Matsunaga, and S. Matsuoka: Proc. Struct. Integr., 2016, vol. 2, pp. 525–32.

    Google Scholar 

  21. Y. Ogawa, H. Matsunaga, J. Yamabe, M. Yoshikawa, and S. Matsuoka: Int. J. Fatigue., 2017, vol. 103, pp. 223–33.

    Article  CAS  Google Scholar 

  22. D.H. Lassila and H.K. Birnbaum: Acta Metall., 1988, vol. 36, pp. 2821–5.

    Article  CAS  Google Scholar 

  23. S. Matsuoka, O. Takakuwa, S. Okazaki, M. Yoshikawa, J. Yamabe, and H. Matsunaga: Scr. Mater., 2018, vol. 154, pp. 101–5.

    Article  CAS  Google Scholar 

  24. K. Wada, J. Yamabe, and H. Matsunaga: Materialia., 2019, vol. 53, p. 100478.

    Article  Google Scholar 

  25. M. Nagumo, H. Yoshida, Y. Shimomura, and T. Kadokura: Mater. Trans., 2001, vol. 42, pp. 132–7.

    Article  CAS  Google Scholar 

  26. K. Splichal, J. Berka, J. Burda, and M. Zmitko: J. Nucl. Mater., 2009, vol. 392, pp. 125–32.

    Article  CAS  Google Scholar 

  27. R. Wang: Corros. Sci., 2009, vol. 51, pp. 2803–10.

    Article  CAS  Google Scholar 

  28. M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, and I.M. Robertson: Acta Mater., 2011, vol. 59, pp. 1601–6.

    Article  CAS  Google Scholar 

  29. C.D. Beachem: Metall. Trans., 1972, vol. 3, pp. 441–55.

    Article  Google Scholar 

  30. D.P. Abraham and C.J. Altstetter: Metall. Mater. Trans. A., 1995, vol. 26A, pp. 2859–71.

    Article  CAS  Google Scholar 

  31. K.A. Nibur, D.F. Bahr, and B.P. Somerday: Acta Mater., 2006, vol. 54, pp. 2677–84.

    Article  CAS  Google Scholar 

  32. Y. Mine and Z. Horita: Mater. Trans., 2012, vol. 53, pp. 773–85.

    Article  CAS  Google Scholar 

  33. A. Macadre, T. Tsuchiyama, and S. Takaki: J. Mater. Sci., 2017, vol. 52, pp. 3419–28.

    Article  CAS  Google Scholar 

  34. A.S. Tetelman and W.D. Robertson: Acta Metall., 1963, vol. 11, pp. 415–26.

    Article  CAS  Google Scholar 

  35. F. Nakasato and I.M. Bernstein: Metall. Trans. A., 1978, vol. 9A, pp. 1317–26.

    Article  CAS  Google Scholar 

  36. A. Kimura and H. Kimura: Mater. Sci. Eng., 1986, vol. 77, pp. 75–83.

    Article  CAS  Google Scholar 

  37. T. Wang, X.X. Tian, Y.W. Li, J. Wang, M. Beller, and H. Jiao: ACS Catal., 2014, vol. 4, pp. 1991–2005.

    Article  CAS  Google Scholar 

  38. G. Te Velde, F.M. Bickelhaupt, E.J. Baerends, C. FonsecaGuerra, S.J.A. van Gisbergen, J.G. Snijders, and T. Ziegler: J. Comput. Chem., 2001, vol. 22, pp. 931–67.

    Article  CAS  Google Scholar 

  39. C. Zou and A. Van Duin: JOM., 2012, vol. 64, pp. 1426–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RK, MK, AS and AN acknowledge partial support from the World Premier International Research Center Initiative (WPI), MEXT, Japan, through the International Institute for Carbon-Neutral Energy Research (I2CNER) of Kyushu University.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Komoda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 25 June 2021; accepted 8 October 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komoda, R., Kubota, M., Staykov, A. et al. Effect of Gas Pressure on Hydrogen Environment Embrittlement of Carbon Steel A106 in Carbon Monoxide Mixed Hydrogen Gas. Metall Mater Trans A 53, 74–85 (2022). https://doi.org/10.1007/s11661-021-06491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06491-3

Navigation