Skip to main content
Log in

Environmentally assisted fatigue crack propagation in steel

  • Environmental Interactions
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The influence of various gasenous environments on fatigue crack propagation has been determined for three quenched and tempered steels with yield strength levels of 800 to 1400 MN/m2. The crack growth rate was increased by an order of magnitude in low pressure (13 KPa) hydrogen, and by a factor of two in most mildly aggressive environments relative to the growth rate in vacuum. The gases oxygen, acetylene, carbon monoxide, and nitrous oxide were dominant in a combined environment with hydrogen while methane and carbon dioxide had only a small effect on crack propagation when added to hydrogen. The crack propagation in acetylene was intermediate between that in hydrogen and the mildly aggressive environments. The increase in fatigue crack propagation rate in the hydrogen environment was dependent on the temperature and the cyclic stress intensity. The fracture mode was transgranular for all conditions except the hydrogen influenced HP-9-4-20 fractures. These results are discussed relative to various stages of the hydrogen embrittlement mechanisms. In pacticular, the results are discussed with respect to the adsorption-dissociation of the environment, transport of the gaseous specie within the plasticly deformed zone by mobile dislocations and interaction with segregated impurities within the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Johnson:Proc. Roy. Soc., 1875, no. 158.

  2. W. Hoffman and W. Rauls,Welding J., 1965, vol. 44, p. 225-S.

    Google Scholar 

  3. G. G. Hancock and H. H. Johnson:Trans. TMS-AIME, 1966, vol. 236, p. 513.

    CAS  Google Scholar 

  4. H. L. Marcus and P. J. Stocker: AGARD Conference Proceedings No. 98, Specialists Meeting on Stress Corrosion Testing Methods, Rev. 16, Brussels, Belgium, 1969.

  5. J. D. Frandsen, N. E. Paton, and H. L. Marcus:Met. Trans. 1974, vol. 5, p. 1655.

    Article  CAS  Google Scholar 

  6. J. D. Frandsen, W. L. Morris, and H. L. Marcus: inHydrogen in Metals, p. 633, ASM, Metals Park, Ohio, 1974.

    Google Scholar 

  7. G. F. Pittinato:Trans. ASM, 1969, vol. 62, p. 410.

    CAS  Google Scholar 

  8. L. H. Germer and A. U. MacRac:J. Chem. Phys., 1962, vol. 37, p. 1382.

    Article  CAS  Google Scholar 

  9. W. A. Spitzig, P. M. Talda, and R. P. Wei:Eng. Fract. Mech., 1968, vol. 1, p. 155.

    Article  CAS  Google Scholar 

  10. H. W. Liu, Ya-Lung Hu, and P. J. Ficalora:Eng. Fract. Mech. 1973, vol. 5, p. 281.

    Article  CAS  Google Scholar 

  11. S. Mostovoy, R. P. Crosley, and E. J. Ripling:J. Mater., 1967, vol. 2, p. 66.

    Google Scholar 

  12. H. L. Marcus and G. C. Sih:Eng. Fract. Mech, 1971, vol. 3, p. 453.

    Article  CAS  Google Scholar 

  13. D. P. Williams and H. G. Nelson:Met. Trans. 1970, vol. 1, p. 63.

    CAS  Google Scholar 

  14. R. P. Gangloff and R. P. Wei:Scr. Met., 1974, vol. 8, p. 661.

    Article  CAS  Google Scholar 

  15. R. J. Walter and W. T. Chandler: Final Report, NASA Contract NAS8-25579 1973.

  16. R. Broudeur, J. P. Fidelle, and H. Anchére:L'Hydrogène Dans Les Metaux, p. 179, Editions Science et Industrie, Paris, 1972.

    Google Scholar 

  17. A. W. Thompson:Met. Trans. 1973, vol. 4, p. 2819.

    Article  CAS  Google Scholar 

  18. M. R. Louthan, Jr., G. R. Caskey, Jr., J. A. Donovan, and D. E. Raul Jr.:Mater. Sci. Eng., 1972, vol. 10, p. 357.

    Article  CAS  Google Scholar 

  19. P. Bastien,C. R. Acad. Sci. Paris, 1951, vol. 232, p. 1845.

    Google Scholar 

  20. J. D. Frandsen and H. L. Marcus:Scr. Met., 1975, vol. 9, p. 1089.

    Article  CAS  Google Scholar 

  21. D. P. Wilhelm: Air Force Flight Dynamics Laboratory Technical Report 69-111, 1970.

  22. H. L. Marcus and J. M. Harris:Scr. Met., 1975, vol. 9, p. 563.

    Article  CAS  Google Scholar 

  23. J. R. Rellick and C. J. McMahon, Jr.:Met. Trans., 1974, vol. 5, p. 2439.

    Article  CAS  Google Scholar 

  24. K. Yoshino and C. J. McMahon, Jr.:Met. Trans., 1974, vol. 5, p. 363.

    CAS  Google Scholar 

  25. J. D. Frandsen, H. L. Marcus, and A. S. Tetelman: inEffect of Hydrogen on Behavior of Materials, p. 299, AIME, New York, 1976.

    Google Scholar 

  26. F. E. Fujita: inFracture of Solids, p. 657, Interscience Publishers, New York, N.Y., 1963.

    Google Scholar 

  27. O. Buck, J. D. Frandsen, C. L. Ho, and H. L. Marcus: Proceedings of 3rd International Conference on Streegth of Metals and Alloys, vol. 1, p. 462, The Institute of Metals and Iron and Steel Institute, 1973.

  28. O. Buck, J. D. Frandsen, and H. L. Marcus:Eng. Fract. Mech., 1975, vol. 7, p. 167.

    Article  Google Scholar 

  29. H. Ishii and J. Weertman:Met. Trans., 1971, vol. 2, p. 3441.

    CAS  Google Scholar 

  30. B. M. W. Trapnell:Proc. roy. Soc., London, 1953, A. 218, p. 566.

    Article  CAS  Google Scholar 

  31. A. H. Priest, P. McIntyre, and C. E. Nicholson: Report MG/38/72, B.S.C. Corporate Laboratory, 1972.

  32. D. O. Hayward and B. M. W. Trapnell:Chemisorption, p. 254, Butterworths, London, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

H. L. MARCUS, formerly with Science center, Rockwell International, Thousand Oaks, CA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frandsen, J.D., Marcus, H.L. Environmentally assisted fatigue crack propagation in steel. Metall Trans A 8, 265–272 (1977). https://doi.org/10.1007/BF02661639

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661639

Keywords

Navigation