Skip to main content
Log in

Microstructural Evolution Study of Fe–Mn–Al–C Steels Through Variable Thermomechanical Treatments

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural evolution of the two austenitic alloys Fe–20Mn–3Al–0.7C wt pct and Fe–20Mn–6Al–0.7C wt pct when different thermal and thermomechanical treatments are performed has been studied. To this end, a generic industrial die of 100 ton capacity and a Gleeble 3800 simulator were selected to perform the thermomechanical treatments. A solubilization treatment was carried out at 1100 °C for 4 days for the two alloys in as cast state. In addition, the specimens deformed with the industrial die underwent a solubilization treatment at 1100 °C for 4 hours. Microstructural characterizations were performed by X-ray diffraction, transmission Mössbauer spectrometry, and electron backscatter diffraction. The results showed both the formation of different austenites rich and poor in solute atoms, as well as different microstructures, as a function of the treatments performed, which affected the resulting dynamically recrystallized microstructures. Notably, it was observed that it is possible to explain and relate the evolution of the microstructure to the hyperfine parameters resulting from fitting the Mössbauer spectra. In particular, the relationship between the degree of dynamic recrystallization and the evolution of an ordered austenitic structure is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10.

Similar content being viewed by others

Abbreviations

SEM:

Scanning electron microscopy

XRD:

X-ray diffraction

TMS:

Transmission Mössbauer spectroscopy

EBSD:

Electron backscatter diffraction

MS:

Mössbauer spectra

TWIP:

Twinning induced plasticity

TRIP:

Transformation induced plasticity

ID:

Industrially deformed

SFE:

Stacking fault energy

S-4d:

Solubilized for 4 days

DL:

Deformed in the laboratory

OES:

Optical emission spectroscopy

TIS-4h:

Thermomechanical industrial treated and then solubilized for 4 hours

HMFD:

Hyperfine magnetic field distribution

XRF:

X-ray fluorescence

EDXS:

Energy-dispersive X-ray spectroscopy

References

  1. G. Frommeyer, E.J. Drewes, and B. Engl: Revue Métall.., 2000, vol. 97, pp. 1245–53. https://doi.org/10.1051/metal:2000110.

    Article  CAS  Google Scholar 

  2. G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46. https://doi.org/10.2355/isijinternational.43.438.

    Article  CAS  Google Scholar 

  3. D. Hao, D. Hua, C.L. Qiu, Z.Y. Tang, J.M. Zeng, and Y. Ping: J. Iron Steel Res. Int., 2011, vol. 18, pp. 36–40. https://doi.org/10.1016/S1006-706X(11)60008-3.

    Article  Google Scholar 

  4. B.C. De Cooman, Y. Estrin, and S.K. Kim: Acta Mater., 2018, vol. 142, pp. 283–362. https://doi.org/10.1016/j.actamat.2017.06.046.

    Article  CAS  Google Scholar 

  5. W. Song, T. Ingendahl, and W. Bleck: Acta Metall.Sin. (Engl Lett.)., 2014, vol. 27, pp. 546–56. https://doi.org/10.1007/s40195-014-0084-9.

    Article  CAS  Google Scholar 

  6. S. Chen, R. Rana, A. Haldar, and R.K. Ray: Prog. Mater Sci., 2017, vol. 89, pp. 345–91. https://doi.org/10.1016/j.pmatsci.2017.05.002.

    Article  CAS  Google Scholar 

  7. S.L. Wong, M. Madivala, U. Prahl, F. Roters, and D. Raabe: Acta Mater., 2016, vol. 118, pp. 140–51. https://doi.org/10.1016/j.actamat.2016.07.032.

    Article  CAS  Google Scholar 

  8. F. Abu-Farha, X. Hu, X. Sun, Y. Ren, L.G. Hector, G. Thomas, and T.W. Brown: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 2583–96. https://doi.org/10.1007/s11661-018-4660-x.

    Article  CAS  Google Scholar 

  9. K. Sato, M. Ichinose, Y. Hirotsu, and Y. Inoue: ISIJ Int., 1989, vol. 29, pp. 868–77. https://doi.org/10.2355/isijinternational.29.868.

    Article  CAS  Google Scholar 

  10. O. Grässel, G. Frommeyer, C. Derder, and H. Hofmann: J. Phys. IV JP., 1997, vol. 7, pp. 1–6. https://doi.org/10.1051/jp4:1997560.

    Article  Google Scholar 

  11. H. Kim, D.W. Suh, and N.J. Kim: Sci. Technol. Adv. Mater., 2013, vol. 14, pp. 1–12. https://doi.org/10.1088/1468-6996/14/1/014205.

    Article  CAS  Google Scholar 

  12. O.A. Zambrano: J. Mater. Sci., 2018, vol. 53, pp. 14003–62. https://doi.org/10.1007/s10853-018-2551-6.

    Article  CAS  Google Scholar 

  13. O.A. Zambrano: J. Eng. Mater. Technoll.Trans. ASME., 2016, vol. 138, pp. 1–10. https://doi.org/10.1115/1.4033632.

    Article  CAS  Google Scholar 

  14. I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2012, vol. 60, pp. 5791–802. https://doi.org/10.1016/j.actamat.2012.07.018.

    Article  CAS  Google Scholar 

  15. J.D. Yoo and K.T. Park: Mater. Sci. Eng. A., 2008, vol. 496, pp. 417–24. https://doi.org/10.1016/j.msea.2008.05.042.

    Article  CAS  Google Scholar 

  16. E. Welsch, D. Ponge, S.M. Hafez Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer, and D. Raabe: Acta Mater., 2016, vol. 116, pp. 188–99. https://doi.org/10.1016/j.actamat.2016.06.037.

    Article  CAS  Google Scholar 

  17. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 3076–90. https://doi.org/10.1007/s11661-009-0050-8.

    Article  CAS  Google Scholar 

  18. Y. Lee and C. Choi: Metall. Mater. Trans. A., 2000, vol. 31A, pp. 355–60. https://doi.org/10.1007/s11661-000-0271-3.

    Article  Google Scholar 

  19. J. Zhang, D. Raabe, and C.C. Tasan: Acta Mater., 2017, vol. 141, pp. 374–87. https://doi.org/10.1016/j.actamat.2017.09.026.

    Article  CAS  Google Scholar 

  20. M. Eskandari, M.A. Mohtadi-Bonab, A. Zarei-Hanzaki, and S.M. Fatemi: J. Mater. Eng. Perform., 2018, vol. 27, pp. 1555–69. https://doi.org/10.1007/s11665-018-3273-2.

    Article  CAS  Google Scholar 

  21. B.B. He, B.M. Huang, S.H. He, Y. Qi, H.W. Yen, and M.X. Huang: Mater. Sci. Eng. A., 2018, vol. 724, pp. 11–6. https://doi.org/10.1016/j.msea.2018.03.065.

    Article  CAS  Google Scholar 

  22. M. Klimova, S. Zherebtsov, N. Stepanov, G. Salishchev, C. Haase, and D.A. Molodov: Mater. Charact., 2017, vol. 132, pp. 20–30. https://doi.org/10.1016/j.matchar.2017.07.043.

    Article  CAS  Google Scholar 

  23. W. Wu, Y.W. Wang, P. Makrygiannis, F. Zhu, G.A. Thomas, L.G. Hector, X. Hu, X. Sun, and Y. Ren: Mater. Sci. Eng. A., 2018, vol. 711, pp. 611–23. https://doi.org/10.1016/j.msea.2017.11.008.

    Article  CAS  Google Scholar 

  24. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–409. https://doi.org/10.1016/S0749-6419(00)00015-2.

    Article  Google Scholar 

  25. D. Li, Y. Feng, Z. Yin, F. Shangguan, K. Wang, Q. Liu, and F. Hu: Mater. Des., 2012, vol. 34, pp. 713–8. https://doi.org/10.1016/j.matdes.2011.05.031.

    Article  CAS  Google Scholar 

  26. Y.F. Shen, Y.D. Wang, X.P. Liu, X. Sun, R. Lin Peng, S.Y. Zhang, L. Zuo, and P.K. Liaw: Acta Mater., 2013, vol. 61, pp. 6093–106. https://doi.org/10.1016/j.actamat.2013.06.051.

    Article  CAS  Google Scholar 

  27. O.A. Zambrano, J. Valdés, Y. Aguilar, J.J. Coronado, S.A. Rodriguez, and R.E. Logé: Mater. Sci. Eng. A., 2017, vol. 689, pp. 269–85. https://doi.org/10.1016/j.msea.2017.02.060.

    Article  CAS  Google Scholar 

  28. O.A. Zambrano and R.E. Logé: Mater. Charact., 2019, vol. 152, pp. 151–61. https://doi.org/10.1016/j.matchar.2019.04.016.

    Article  CAS  Google Scholar 

  29. W.-C. Cheng, C.-Y. Cheng, C.-W. Hsu, and D.E. Laughlin: Mater. Sci. Eng. A., 2015, vol. 642, pp. 128–35. https://doi.org/10.1016/j.msea.2015.06.096.

    Article  CAS  Google Scholar 

  30. G.M. Barona Osorio, G.A. Pérez, J. Ramos, J.F. Durán, P.C. Astudillo, A.F. Soriano, and H. Sánchez Sthepa: Hyperfine Interact., 2017, vol. 238, p. 56. https://doi.org/10.1007/s10751-017-1422-x.

    Article  CAS  Google Scholar 

  31. K. Sato, K. Tagawa, and Y. Inoue: Mater. Sci. Eng. A., 1989, vol. 111, pp. 45–50. https://doi.org/10.1016/0921-5093(89)90196-2.

    Article  Google Scholar 

  32. G.D. Tsay, Y.H. Tuan, C.L. Lin, C.G. Chao, and T.F. Liu: Mater. Trans., 2011, vol. 52, pp. 521–5. https://doi.org/10.2320/matertrans.M2010255.

    Article  CAS  Google Scholar 

  33. L.N. Bartlett, D.C. Van Aken, J. Medvedeva, D. Isheim, N.I. Medvedeva, and K. Song: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 2421–35. https://doi.org/10.1007/s11661-014-2187-3.

    Article  CAS  Google Scholar 

  34. V.H.C. de Albuquerque, E. de Macedo Silva, J. Pereira Leite, E.P. de Moura, V.L. de Araújo Freitas, and J.M.R.S. Tavares: Mater. Design., 2010, vol. 31, pp. 2147–50. https://doi.org/10.1016/j.matdes.2009.11.010.

    Article  CAS  Google Scholar 

  35. E. Murad: Handbook of Clay Science, vol. 5, 2013, pp. 11–24. https://doi.org/10.1016/B978-0-08-098259-5.00003-2.

  36. C. Paduani, E. Da Silva, and G.A. Pérez-Alcázar: Hyperfine Interact., 1992, vol. 73, pp. 233–45. https://doi.org/10.1007/BF02418598.

    Article  CAS  Google Scholar 

  37. J. Ramos, J.F. Piamba, H. Sánchez, and G.A. Pérez: Hyperfine Interact., 2015, vol. 232, pp. 119–26. https://doi.org/10.1007/s10751-015-1127-y.

    Article  CAS  Google Scholar 

  38. O.A. Zambrano, J. Valdés, L.A. Rodriguez, D. Reyes, E. Snoeck, S.A. Rodríguez, and J.J. Coronado: Tribol. Int., 2019, vol. 135, pp. 421–31. https://doi.org/10.1016/j.triboint.2019.03.002.

    Article  CAS  Google Scholar 

  39. F. Varret and J. Teillet: Université du Maine (France).

  40. B.H. Toby: J. Appl. Crystallogr., 2001, vol. 34, pp. 210–3. https://doi.org/10.1107/S0021889801002242.

    Article  CAS  Google Scholar 

  41. ASTM: E92-17: Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, Annual Book of ASTM Standards, 2017.

  42. O.A. Zambrano, J. Valdés, Y. Aguilar, J.J. Coronado, S.A. Rodríguez, and R.E. Logé: Mater. Sci. Eng. A., 2017, vol. 689, pp. 269–85. .

    Article  CAS  Google Scholar 

  43. O.A. Zambrano, G. Tressia, and R.M. Souza: Eng. Fail. Anal., 2020, vol. 115, 104621. https://doi.org/10.1016/j.engfailanal.2020.104621.

    Article  CAS  Google Scholar 

  44. Y. Ishikawa and Y. Endoh: J. Phys. Soc. Jpn., 1967, vol. 23, pp. 205–13. https://doi.org/10.1143/JPSJ.23.205.

    Article  CAS  Google Scholar 

  45. G.A. Pérez Alcázar, E.G. Da Silva, and C. Paduani: Hyperfine Interact., 1991, vol. 66, pp. 221–9. https://doi.org/10.1007/BF02395869.

    Article  Google Scholar 

  46. B.K. Vainshtein, V.M. Fridkin, V.L. Indenbom, and P. Paufler: Modern Crystallography 2, vol. 2, 3rd edn., 2000, pp. 1–122.

  47. Y. Sutou, N. Kamiya, R. Umino, L. Ohnuma, and K. Ishida: ISIJ Int., 2010, vol. 50, pp. 893–9. https://doi.org/10.2355/isijinternational.50.893.

    Article  CAS  Google Scholar 

  48. O.A. Zambrano, Y. Aguilar, J. Valdés, S.A. Rodríguez, and J.J. Coronado: Wear., 2016, vol. 348–349, pp. 61–8. https://doi.org/10.1016/j.wear.2015.11.019.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Minciencias (Colombian Agency), Organización Hercules, and the Universidad del Valle under Project No. 1106-715-51419. The authors also thank project CI 71008 of the Universidad del Valle. Roland Logé acknowledges the generous support of the PX Group to the Thermomechanical Metallurgy Laboratory at EPFL. Oscar Zambrano would like to acknowledge the National Research Council Canada for support. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied.

Data Availability

The raw/processed data required to reproduce these findings can be shared upon request.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Durán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 13, 2021; accepted August 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durán, J.F., Pérez, G.A., Rodríguez, J.S. et al. Microstructural Evolution Study of Fe–Mn–Al–C Steels Through Variable Thermomechanical Treatments. Metall Mater Trans A 52, 4785–4799 (2021). https://doi.org/10.1007/s11661-021-06424-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06424-0

Navigation