Skip to main content
Log in

Mossbauer and XRD characterization of the phase transformations in a Fe-Mn-Al-C-Mo-Si-Cu as cast alloy during tribology test

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

In present study Fe-29.0Mn-6Al–0.9C-1.8Mo-1.6Si-0.4Cu (%w) alloy was obtained after melted in an induction furnace, and then molded as an ingot. From the as cast ingot it were cut samples for the different characterization measurements. The microstructure of the as-cast sample is of dendritic type and its XRD pattern was refined with the lines of the austenite, with a big volumetric fraction, and the lines of the martensite, with small volumetric fraction. The Mössbauer spectrum of the sample was fitted with a broad singlet which corresponds to disordered austenite. After the tribology test, its XRD pattern was refined with the lines of two austenite phases, one similar to the previous one and other with bigger lattice parameter. The total volumetric fraction of the austenite is smaller than that obtained for sample without wear. It was added the lines of the martensite phase with bigger volumetric fraction than that of the previous sample. The Mössbauer spectrum of the weared sample was fitted with two paramagnetic sites which correspond to the two Fe austenite phases and a hyperfine magnetic field distribution which is associated to the disordered original martensite and the new one which appears in the surface as a consequence of the wear process. These results show that during wear process the original austenite phase is transformed in martensite and in a new austenite phase. The increases of the martensitic phase improves mechanical properties and wear behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmatz, D.J.: Trans. ASM 52, 898 (1960)

    MATH  Google Scholar 

  2. Altstetter, C.J., Bentley, A.P., Fourie, J.W., Kirkbride, A.N.: Mater. Sci. Eng. 82, 13 (1986)

    Article  Google Scholar 

  3. Rama Rao, P., Kutumbarao, V.V.: Int. Mater. Rev. 34(2), 69 (1989)

    Google Scholar 

  4. Bueno, L.O., Sordi, V.L.: Mater. Sci. Eng. A (2007)

  5. Mustafa, Y., Yahya, A.: Mater. Des. 30(3), 878 (2009)

    Article  Google Scholar 

  6. Kalashnikov, I.S., Acselrad, O., Pereira, L.C.: J. Mater. Eng. Perform. 9(6), 597 (2000)

    Article  MATH  Google Scholar 

  7. Wang, C.J., Chang, Y.C.: Mater. Chem. Phys. 76, 151–161 (2002)

    Article  Google Scholar 

  8. Wang, C.J., Chang, Y.C.: Mater. Chem. Phys. 77, 738–743 (2002)

    Article  Google Scholar 

  9. Duh, J.G., Lee, L.W., Wang, C.J.: J. Mater. Sci. 23, 2649–2660 (1998)

    Article  ADS  Google Scholar 

  10. De Freitas Cunha Lins, V., Freitas, M.A., De Paula e Silva, E.M.: Corros. Sci. 46, 1895–1907 (2004)

    Article  Google Scholar 

  11. Kayak, G.L.: Met. Sci. Heat Treat. 2, 95 (1969)

    Article  Google Scholar 

  12. Jackson, P.R.S., Wallwork, G.R.: Oxid. Met. 21, 135 (1984)

    Article  Google Scholar 

  13. Duh, J.G., Wang, C.J.: J. Mater. Sci. 25, 2063 (1990)

    Article  ADS  Google Scholar 

  14. Agudelo, A.C., Marco, J.F., Gancedo, J.R., Pérez Alcázar, G.A.: Hyperfine Interact. 139/140, 141 (2002)

    Article  Google Scholar 

  15. Shun, T.S., Wan, C.M., Byrne, J.G.: Scr. Metall. 25, 1769 (1991)

    Article  Google Scholar 

  16. Tjong, S.C., Zhu, S.M: Mater. Trans. JIM 38(2), 112 (1997)

    Article  Google Scholar 

  17. Hwang, K.H., Wan, C.M., Byrne, J.G: Mater. Sci. Eng. A 132, 161 (1991)

    Article  Google Scholar 

  18. Cheng, W.C., Liu, C.F., Lai, Y.F.: Scr. Mater. 48, 295 (2003)

    Article  Google Scholar 

  19. Choo, W.K., Kim, J.H., Yoon J.C.: Acta Mater. 45(12), 4877 (1997)

    Article  Google Scholar 

  20. Liu, X.J., Hao, S.M., Xu, L.Y., Guo, Y.F., Chen, H.: Metall. Trans. A 27A, 2429 (1996)

    Article  Google Scholar 

  21. Rodriguez, V.F., Perez Alcazar, G.A., Gracia, M., Marco, J.F., Gancedo, J.R.: Oral presentation, Latin American Conference on the Applications of the Mossbauer (Lacame, 2002), Panama City, Panama, September 2002

  22. Pérez Alcázar, G.A.: Rev. Acad. Colomb. Cienc. 28(107), 265–274 (2004)

    Google Scholar 

  23. Zum Gahr, K.H.: Tribol. Int. 31(10), 587–596 (1998)

    Article  Google Scholar 

  24. Larson, A.C., Von Dreele, R.B.: General Structure Analysis System GSAS, Los Alamos National Laboratory Report No. LAUR 86-748 (2004)

  25. Varret, F., Teillet, J., unpublished MOSFIT program

  26. See for example the CIF database of American Mineralogical Society

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Pérez Alcazar.

Additional information

Proceedings of the 14th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2014), Toluca, Mexico, 10–14 November 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, J., Piamba, J.F., Sánchez, H. et al. Mossbauer and XRD characterization of the phase transformations in a Fe-Mn-Al-C-Mo-Si-Cu as cast alloy during tribology test. Hyperfine Interact 232, 119–126 (2015). https://doi.org/10.1007/s10751-015-1127-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-015-1127-y

Keywords

Navigation