Skip to main content
Log in

Solidification Path, Microstructure, and Weldability Differences Between Fe-Based Superalloy A286 and an Experimental γ′ Strengthened TRIP Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

MODTRIP-130, a recently designed steel adapted from the composition of superalloy A286, utilizes γ′ precipitation and the transformation induced plasticity effect to achieve high strength and toughness for a potential fit in defense applications. To be viable in this role, candidate alloys must also have good weldability. Varestraint testing, microstructural characterization, electron probe microanalysis, and differential scanning calorimetry were performed on MODTRIP-130 and A286 to characterize the solidification path and weldability of the alloys, and to compare variations in behavior induced by the differences in composition. While both alloys were highly susceptible to solidification cracking, MODTRIP-130 exhibited slightly increased cracking susceptibility. Characterization of solute partition coefficients and the evolving liquid composition during solidification revealed similar Ti and Si segregation, which caused TiC and Laves formation in both materials. Significant partitioning of Ni, and higher nominal concentrations of Ti and Al, caused the formation of an additional Ni-Al rich phase in MODTRIP-130. This correlated with an increased amount of residual liquid stabilized at the end of solidification and an increase in the fraction of secondary phases in MODTRIP-130 that exacerbated cracking susceptibility, despite its smaller solidification temperature range of 249 °C compared to 331 °C measured in A286.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N. Wengrenovich Thesis: 2016.

  2. M. Nageswara: Materials for Gas Turbines—An Overview, 2011.

  3. 3 I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–53.

    Article  CAS  Google Scholar 

  4. 4 G.B. Olson and M. Cohen: Mat. Trans. A, 1975, vol. 6, p. 791.

    Article  Google Scholar 

  5. G.B. Olson: Transformation Plasticity and the Stability of Plastic Flow, ASM, Washington, DC, 1984.

    Google Scholar 

  6. 6 G. Lacroix, T. Pardoen, and P.J. Jacques: Acta Mater., 2008, vol. 56, pp. 3900–13.

    Article  CAS  Google Scholar 

  7. 7 J.N. DuPont, J.C. Lippold, and S.D. Kiser: Welding Metallurgy and Weldability of Nickel-Base Alloys, Wiley, Hoboken, New Jersey, 2009.

    Book  Google Scholar 

  8. J.A. Brooks and R.W. Krenzer: Weld. Res. Suppl., 1974, 53: pp. 242–5.

    Google Scholar 

  9. R.F. Muraca and J.S. Whittick: Materials Data Handbook: Stainless Steel Alloy A-286, vol. 1, 1972

  10. 10 L. Li, S. Wang, W. Huang, and Y. Jin: J. Manuf. Process., 2020, vol. 50, pp. 295–304.

    Article  Google Scholar 

  11. R. Frisk, N.Å.I. Andersson, and B. Rogberg: Metals (Basel)., https://doi.org/10.3390/met9060711.

  12. J.A. Brooks: Weld. J., 1974, vol. 53, pp. 517–23.

    Google Scholar 

  13. J. Lippold, W. Baeslack, and I. Varol: Weld. J., 1992, vol. 71, pp. 1–14

    Google Scholar 

  14. 14 S. Chen, M. Zhao, and L. Rong: Mater. Sci. Eng. A, 2013, vol. 571, pp. 33–7.

    Article  CAS  Google Scholar 

  15. 15 R. Rosenthal and D.R.F. West: Mater. Sci. Technol., 1999, vol. 15, pp. 1387–94.

    Article  CAS  Google Scholar 

  16. 16 Ó. Martín, P. De Tiedra, and M. San-Juan: Mater. Sci. Eng. A, 2017, vol. 688, pp. 309–14.

    Article  Google Scholar 

  17. 17 P.C.J. Gallagher: Metall. Trans., 1970, vol. 1, pp. 2429–61.

    Article  CAS  Google Scholar 

  18. 18 L. Mujica, S. Weber, H. Pinto, C. Thomy, and F. Vollertsen: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2071–8.

    Article  Google Scholar 

  19. 19 E. Scheil: Zeitschrift für Met., 1942, vol. 34, pp. 70–2.

    Google Scholar 

  20. J.N. Dupont: Metall. Mater. Trans. A 1996, vol. 27A, pp. 3612–20.

    Article  CAS  Google Scholar 

  21. 21 A.C. Wang, Y.Y. Li, C.G. Fan, K. Yang, D.F. Li, X. Zhao, and C.X. Shi: Scr. Metall. Mater., 1994, vol. 31, pp. 1695–700.

    Article  CAS  Google Scholar 

  22. J.N. Dupont, S.W. Banovic, and A.R. Marder: Weld. J. Miami Fla, 2003, vol. 82, pp. 125–35.

    Google Scholar 

  23. 23 J.N. Dupont: J. Mater. Sci., 1997, vol. 32, pp. 4101–7.

    Article  CAS  Google Scholar 

  24. 24 O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Scr. Mater., 2004, vol. 51, pp. 683–8.

    Article  CAS  Google Scholar 

  25. 25 A. Kagawa, K. Iwata, A.A. Nofal, and T. Okamoto: Mater. Sci. Technol., 1985, vol. 1, pp. 678–83.

    Article  CAS  Google Scholar 

  26. C.J. Farnin, S. Orzolek, and J.N. Dupont: Metall. Mater. Trans. A, 2020, vol. 51, pp. 5771–80.

    Article  Google Scholar 

  27. 27 P.M.N. Ocansey and D.R. Pourier: Mater. Sci. Eng. A, 1996, vol. 211, pp. 10–4.

    Article  Google Scholar 

  28. V.E. Bazhenov, M. V. Pikunov, and V. V. Cheverikin: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 843–50.

    Article  Google Scholar 

  29. A. Krupkowski, et al.: Bull. l’Academie Pol. des Sci., 1961, vol. 9.

  30. 30 M.D. Abràmoff, P.J. Magalhães, and S.J. Ram: Biophotonics Int., 2004, vol. 11, pp. 36–41.

    Google Scholar 

  31. EDAX: Inc. Genesis Software, 2003. Accessed Sept. 2019–Feb 2021.

  32. M. Ganesan, D. Dye, and P.D. Lee: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2191–204.

    Article  CAS  Google Scholar 

  33. 33 J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  34. Thermo-Calc TCFE10 Fe-Base Alloys Database. Accessed Sept. 2019–Feb. 2021.

  35. 35 M.J. Cieslak: Weld. J., 1991, vol. 70, pp. 49s-56s.

    Google Scholar 

  36. 36 R.A. Wheeling and J.C. Lippold: Mater. Charact., 2016, vol. 115, pp. 97–103.

    Article  CAS  Google Scholar 

  37. 37 S. Dépinoy, M. Sennour, L. Ferhat, and C. Colin: Scrip, 2021, vol. 194, pp. 1–5.

    Google Scholar 

  38. 38 G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, and W.F. Hammetter: Metall. Trans. A, 1989, vol. 20A, pp. 2149–58.

    Article  CAS  Google Scholar 

  39. 39 J.N. Dupont, C. V. Robino, and A.R. Marder: Weld. J., 1998, vol. 77, pp. 417–31.

    Google Scholar 

  40. 40 T.W. Clyne and G.J. Davies: Br. Foundrym., 1981, vol. 74, pp. 65–73.

    Google Scholar 

  41. 41 J.N. DuPont, C. V. Robino, and A.R. Marder: Sci. Technol. Weld. Join., 1999, vol. 4, pp. 1–14.

    Article  CAS  Google Scholar 

  42. M.J. Cieslak: Ph.D. Thesis, Rensselaer Polytechnic Institute, 1983.

Download references

Acknowledgements

This research is sponsored by the DLA-Troop Support, Philadelphia, PA and the Defense Logistics Agency Information Operations, J68, Research & Development, Ft. Belvoir, VA. The authors gratefully acknowledge useful discussions on this work from David Poweleit of the Steels Founders’ Society of America, Dr. Matthew Draper of Carderock Naval Surface Warfare Center, and Prof. Greg Olson and Clay Houser of MIT. The authors also thank Goodwin Steel Castings and Scot Forge for providing material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Farnin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer The publication of this material does not constitute approval by the government of the findings or conclusion herein. Wide distribution or announcement of this material shall not be made without specific approval by the sponsoring government activity.

Manuscript submitted May 6, 2021; accepted July 12, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farnin, C.J., DuPont, J.N. Solidification Path, Microstructure, and Weldability Differences Between Fe-Based Superalloy A286 and an Experimental γ′ Strengthened TRIP Steel. Metall Mater Trans A 52, 4488–4499 (2021). https://doi.org/10.1007/s11661-021-06400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06400-8

Navigation