Skip to main content
Log in

Creep and Hot Tensile Behavior of AISI 201LN Austenitic Stainless Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

AISI 200LN is a low nickel austenitic stainless steel (SS) in which nitrogen and manganese are used for nickel substitution. It shows excellent mechanical properties at room and cryogenic temperatures, with a lower production cost, if compared to the traditional 300 series SS. In spite of that, the performance of AISI 200 series SS under creep conditions remains largely underexplored in the literature. This study aims to assess the mechanical response of the AISI 201LN alloy when subjected to hot tensile and creep tests. The tensile tests were conducted at room temperature and in the range of 500 °C to 800 °C, whereas the creep tests were performed under constant load and within the temperature range 600 °C to 800 °C. Correlations among stress, temperature, secondary creep rate, rupture time, and creep ductility were obtained and results were compared to the literature data for the 300 series of traditional stainless steels. Based on the Zener–Hollomon parameter, constitutive equations were applied to describe the creep behavior of AISI 201LN within the range of stresses and temperatures used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Charles: Rev. Metall., 2007, vol. 104, pp. 308–17. .

    Article  CAS  Google Scholar 

  2. ISSF: Stainless Steel in Figures 2020, ISSF-International Stainless Steel Forum, 2020. https://www.worldstainless.org/statistics/stainless-steel-in-figures/. Accessed 20 Jan 2021.

  3. J. Charles, A. Kosmac, J. Krautschick, J.A. Simón, N. Suutala, and T. Taulavuori: Austenitic Chromium–Manganese Stainless Steels—A European Approach. Materials and Applications Series, 2012. https://www.worldstainless.org/media/lqrfojpy/austenitic_crmn_en.pdf. Accessed 28 Jan 2021.

  4. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2017, vol. 128, pp. 120–34. .

    Article  CAS  Google Scholar 

  5. A.P. Marques de Oliveira, M. Houmard, W. da Silva Labiapari, and C. Godoy: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 1663–71. .

    Article  Google Scholar 

  6. Y. Ikegami and R. Nemoto: ISIJ Int., 1996, vol. 36, pp. 855–61. .

    Article  CAS  Google Scholar 

  7. A. Rezaee, A. Kermanpur, A. Najafizadeh, M. Moallemi, and H. Samaei Baghbadorani: Materials., 2013, vol. 46, pp. 49–53. .

    CAS  Google Scholar 

  8. M. Moallemi, A. Kermanpur, A. Najafizadeh, A. Rezaee, H.S. Baghbadorani, and P.D. Nezhadfar: Mater. Sci. Eng. A., 2016, vol. 653, pp. 147–52. .

    Article  CAS  Google Scholar 

  9. A.S. Hamada, L.P. Karjalainen, R.D.K. Misra, and J. Talonen: Mater. Sci. Eng. A., 2013, vol. 559, pp. 336–44. .

    Article  CAS  Google Scholar 

  10. ASTM-International: ASTM E8/E8M-13: Standard Test Methods for Tension Testing of Metallic Materials. ASTM-International, West Conshohocken, 2013.

    Google Scholar 

  11. ASTM-International: ASTM E21-09: Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials. ASTM-International, West Conshohocken, 2017.

    Google Scholar 

  12. ASTM-International: ASTM E139-11: Standard Test Method for Conducting Creep, Creep-Rupture and Stress-Rupture Tests of Metallic Materials. ASTM-International, West Conshohocken, 2011.

    Google Scholar 

  13. ASTM-International: ASTM E112–13: Standard Test Methods for Determining Average Grain Size. ASTM-International, West Conshohocken, 2013.

    Google Scholar 

  14. A.S. Hamada, A.P. Kisko, P. Sahu, and L.P. Karjalainen: Mater. Sci. Eng. A., 2015, vol. 628, pp. 154–9. .

    Article  CAS  Google Scholar 

  15. AISI: A Designers Handbook Series—No. 9004—High Temperature Characteristics of Stainless Steels, AISI-American Iron and Steel Institute, 2020. https://nickelinstitute.org/media/1699/high_temperaturecharacteristicsofstainlesssteel_9004_.pdf. Accessed 28 Jan 2021.

  16. J.J. Jonas and M.J. Luton: in Advances in Deformation Processing. J.J. Burke, et al. eds., Plenum Press, New York, 1978, pp. 215–42.

    Chapter  Google Scholar 

  17. M. Li, Y. Duan, D. Yao, Y. Guan, and L. Yang: Metals., 2020, vol. 10, p. 64. .

    Article  CAS  Google Scholar 

  18. W.G. Kim, S.N. Yoon, and W.S. Ryu: Key Eng. Mater., 2005, vol. 297, pp. 2272–7. .

    Article  Google Scholar 

  19. J.T. Boyle and J. Spence: Stress Analysis for Creep, Butterworth & Co. Ltd., 1988. ISBN 0408-01172-6.

  20. K.R. Williams and B. Wilshire: Met. Sci. J., 1973, vol. 7, pp. 176–9. .

    Article  CAS  Google Scholar 

  21. M.D. Mathew, G. Sasikala, K.B.S. Rao, and S.L. Mannan: Mater. Sci. Eng. A., 1991, vol. 148, pp. 253–60. .

    Article  Google Scholar 

  22. D.G. Morris and D.R. Harries: Met. Sci. J., 1978, vol. 12, pp. 525–31. .

    Article  CAS  Google Scholar 

  23. M.E. Kassner and M.T.P. Prado: Fundamentals of Creep in Metals and Alloys. Elsevier Ltd., Amsterdam, 2004.

    Google Scholar 

  24. R. Viswanathan: Damage Mechanisms and Life Assessment of High Temperature Components. ASM International, Materials Park, 1989.

    Book  Google Scholar 

  25. C. Zener and H. Hollomon: J. Appl. Phys., 1944, vol. 15, pp. 22–7. .

    Article  Google Scholar 

  26. T.G. Langdon: Strength of Metals and Alloys (ICSMA 6) Proceedings of the 6th International Conference, Melbourne, Australia, R.C. Gifkins, ed., 1982, p. 1105.

  27. S.A.A. Akbari Mousavi and M. Meisami: Int. Conf. Metall. Mater.—METAL, Roznov pod Radhostem, Czech Republic, 2010, pp. 1–10.

  28. T. Zhuchkova, S. Aksenov, V. Shkatov, and I. Mazur: J. Chem. Technol. Metall., 2018, vol. 53, pp. 354–9. .

    CAS  Google Scholar 

  29. I. Rieiro, M. Carsí, and O.A. Ruano: Mater. Sci. Technol., 2009, vol. 25, pp. 995–1002. .

    Article  CAS  Google Scholar 

  30. M. Erami, A.H. Daei-Sorkhabi, and F. Vakili-Tahami: Int. J. Press. Vessel Pip., 2019, vol. 176, p. 103947. .

    Article  CAS  Google Scholar 

  31. E.C. Monkman and N.J. Grant: An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests—Proceeding of ASTM. ASTM-International, West Conshohocken, 1956.

    Google Scholar 

  32. F. Garofalo: ASTM/STP., 1960, vol. 283, pp. 82–9. .

    CAS  Google Scholar 

  33. V.L. Sordi and L.O. Bueno: Mater. Sci. Eng. A., 2008, vol. 483–84, pp. 498–501. .

    Article  Google Scholar 

  34. F. Dobes and K. Milicka: Met. Sci., 1976, vol. 10, pp. 382–4. .

    Article  CAS  Google Scholar 

  35. G. Sundararajan: Mater. Sci. Eng. A., 1989, vol. 112, pp. 205–14. .

    Article  Google Scholar 

  36. E.I. Samuel, B.K. Choudhary, D.P.R. Palaparti, and M.D. Mathew: Procedia Eng., 2013, vol. 55, pp. 64–9. .

    Article  CAS  Google Scholar 

  37. C. Phaniraj, B.K. Choudhary, K. Bhanu Sankara Rao, and B. Raj: Scripta Mater., 2003, vol. 48, pp. 1313–8. .

    Article  CAS  Google Scholar 

  38. V. Sklenička, K. Kucharová, P. Král, M. Kvapilová, and J. Dvorak: Kov. Mater., 2017, vol. 55, pp. 69–80. .

    Google Scholar 

  39. M.F. Ashby and B.F. Dyson: Advances in Fracture Research. Pergamon Press, Oxford, 1984.

    Google Scholar 

  40. L.O. Bueno and V.L. Sordi: Mater. Sci. Eng. A., 2008, vol. 483–484, pp. 560–3. .

    Article  Google Scholar 

  41. L.O. Bueno and J.F.R. Sobrinho: Matéria (Rio J.)., 2012, vol. 17, pp. 1098–108. .

    Article  CAS  Google Scholar 

  42. R.E. Schramm and R.P. Reed: Metall. Trans. A., 1975, vol. 6, p. 1345. .

    Article  Google Scholar 

  43. G.E. Dieter and D.J. Bacon: Mechanical Metallurgy. McGraw-Hill, New York, 1988.

    Google Scholar 

  44. M.D. Mathew, K. Laha, and V. Ganesan: Mater. Sci. Eng. A., 2012, vol. 535, pp. 76–83. .

    Article  CAS  Google Scholar 

  45. A.F. Smitll and R. Hales: Met. Sci. J., 1975, vol. 9, pp. 181–4. .

    Article  Google Scholar 

Download references

Acknowledgments

Gustavo H. Pelissari acknowledges CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for his scholarship, Grant Number 88882.332698/2019-01. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001, the Graduate Program in Materials Science and Engineering of the Federal University of São Carlos and the São Paulo Research Foundation (FAPESP)-Grant Number 2019/07178-6. The authors would like to thank the STM Materials Testing Systems, for the technical support in the creep tests, and the Aperam South America, for supplying samples of the 201LN material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Henrique Pelissari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 6, 2021; accepted July 8, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelissari, G.H., Braga, D.P., Oliveira, P.H.F. et al. Creep and Hot Tensile Behavior of AISI 201LN Austenitic Stainless Steel. Metall Mater Trans A 52, 4413–4423 (2021). https://doi.org/10.1007/s11661-021-06394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06394-3

Navigation