Skip to main content
Log in

Microstructure Modification of Liquid Phase Sintered Fe–Ni–B–C Alloys for Improved Mechanical Properties

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Powder metallurgy (P/M) has been widely used in automobile, home appliances, and electronic devices, but its uses are very limited due to the low relative density of 85 to 95 pct. The Fe–Ni–B–C alloy system can mitigate the aforementioned issues by the liquid phase sintering, which results in a nearly full densification. However, the boron-containing alloys produced the brittle eutectic phases [Fe3(C, B) and Fe2B] along the grain boundaries, which are detrimental to the mechanical properties. The main objective of this study is to improve the ductility of boron-containing alloys through the microstructure modification. For this, the volume fraction of solidified phase was optimized by controlling the composition, and the coarsening of solidified α-Fe particles into the pearlite matrix was induced by a post annealing, which reduces the continuous network of eutectic phases and increased the grain continuity. In addition, the effect of microstructure modification on the mechanical properties of Fe–B–C and Fe–Ni–B–C alloys was comparatively investigated. As a result of microstructure modification, the post-annealed Fe–1Ni–0.4B0.8C alloy exhibited a high elongation to failure of 5.2 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Narasimhan: Mater. Chem. Phys., 2001, vol. 67, pp. 56–65. .

    Article  CAS  Google Scholar 

  2. A. Hadrboletz and B. Weiss: Int. Mater. Rev., 1997, vol. 42, pp. 1–44. .

    Article  CAS  Google Scholar 

  3. B.A. James: Powder Metall., 1985, vol. 28, pp. 121–30. .

    Article  CAS  Google Scholar 

  4. R.M. German, P. Suri, and S.J. Park: J. Mater. Sci., 2009, vol. 44, pp. 1–39. .

    Article  CAS  Google Scholar 

  5. J. Liu, A. Upadhyaya, and R.M. German: Metall. Mater. Trans. A., 1999, vol. 30A, pp. 2209–20. .

    Article  CAS  Google Scholar 

  6. H. Borgström and L. Nyborg: J. Iron Steel Res. Int., 2007, vol. 14, pp. 70–6. .

    Article  Google Scholar 

  7. H. Preusse and J.D. Bolton: Powder Metall., 1999, vol. 42, pp. 51–62. .

    Article  CAS  Google Scholar 

  8. S.J. Jamil and G.A. Chadwick: Powder Metall., 1985, vol. 28, pp. 65–71. .

    Article  CAS  Google Scholar 

  9. M. Marucci, A. Lawley, R. Causton, and S. Saritas: Proc. Powder Metall. Congr. Exhib., Orlando, Florida, USA, 2002, pp. 53–62.

  10. Y.C. Peng, H.J. Jin, J.H. Liu, and G.L. Li: Mater. Sci. Eng. A., 2011, vol. 529, pp. 321–5. .

    Article  CAS  Google Scholar 

  11. H.O. Gulsoy, M.K. Bilici, Y. Bozkurt, and S. Salman: Mater. Des., 2007, vol. 28, pp. 2255–9. .

    Article  CAS  Google Scholar 

  12. J. Lentz, A. Röttger, and W. Theisen: Acta Mater., 2015, vol. 99, pp. 119–29. .

    Article  CAS  Google Scholar 

  13. C. Yang, F. Liu, G. Yang, Y. Chen, N. Liu, and Y. Zhou: J. Alloys Compd., 2007, vol. 441, pp. 101–6. .

    Article  CAS  Google Scholar 

  14. Y. Tomita: Int. Mater. Rev., 2000, vol. 45, pp. 27–37. .

    Article  CAS  Google Scholar 

  15. H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin, and E. Toyserkani: Mater. Des., 2018, vol. 144, pp. 98–128. .

    Article  CAS  Google Scholar 

  16. Z. Xiu, A. Salwen, X. Qin, F. He, and X. Sun: Powder Metall., 2003, vol. 46, pp. 171–4. .

    Article  CAS  Google Scholar 

  17. M.W. Wu, Y.C. Fan, H.Y. Huang, and W.Z. Cai: Metall. Mater. Trans. A., 2015, vol. 46A, pp. 5285–95. .

    Article  CAS  Google Scholar 

  18. T.B. Sercombe: Mater. Sci. Eng. A., 2003, vol. 344, pp. 312–7. .

    Article  Google Scholar 

  19. M. Sarasola, T. Gómez-Acebo, and F. Castro: Acta Mater., 2004, vol. 52, pp. 4614–22. .

    Article  CAS  Google Scholar 

  20. R. Annamalai, A. Upadhyaya, and D. Agrawal: Bull. Mater. Sci., 2013, vol. 36, pp. 447–56. .

    Article  CAS  Google Scholar 

  21. F.L. Serafini, M. Peruzzo, I. Krindges, M.F.C. Ordoñez, D. Rodregues, R.M. Souza, and M.C.M. Farias: Mater. Charact., 2019, vol. 152, pp. 253–64. .

    Article  CAS  Google Scholar 

  22. S. Ma, J. Xing, S. Guo, Y. Bai, H. Fu, P. Lyu, Z. Huang, and W. Chen: Mater. Chem. Phys., 2017, vol. 199, pp. 356–69. .

    Article  CAS  Google Scholar 

  23. M. Selecka, A. Salak, L. Parilak, and H. Danninger: Proc. 2000 PM World Congr., Kyoto, Japan, JPMA ed., 2000, Part 1, pp. 16–20.

  24. T. Ogawa and T. Koseki: Weld. Res. Suppl., 1989, vol. 68, pp. 181–91. .

    Google Scholar 

  25. M. Selecká, A. Šalak, and H. Danninger: J. Mater. Process. Technol., 2003, vol. 143, pp. 910–5. .

    Article  CAS  Google Scholar 

  26. X. Wei, Z. Chen, J. Zhong, L. Wang, W. Yang, and Y. Wang: Comput. Mater. Sci., 2018, vol. 147, pp. 322–30. .

    Article  CAS  Google Scholar 

  27. M. Sarasola, S. Sainz, and F. Castro: Euro. PM Conf. Proc., 2005, vol. 1, pp. 349–56. .

    Google Scholar 

  28. C. Tojal, T. Gómez-Acebo, and F. Castro: Mater. Sci. Forum., 2007, vol. 534–536, pp. 661–4. .

    Article  Google Scholar 

  29. M. Skałoń, M. Hebda, K. Sulikowska, and J. Kazior: Mater. Des., 2016, vol. 108, pp. 462–9. .

    Article  CAS  Google Scholar 

  30. M.V. Sundaram, K.B. Surreddi, E. Hryha, A. Veiga, S. Berg, F. Castro, and L. Nyborg: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 255–63. .

    Article  CAS  Google Scholar 

  31. M.W. Wu, W.Z. Cai, Z. Lin, and S. Chang: Mater. Des., 2017, vol. 133, pp. 536–48. .

    Article  CAS  Google Scholar 

  32. M.W. Wu and W.Z. Cai: Mater. Charact., 2016, vol. 113, pp. 90–7. .

    Article  CAS  Google Scholar 

  33. S. Egashira, T. Sekiya, T. Ueno, and M. Fujii: Jpn Soc. Mech. Eng., 2019, vol. 6, pp. 1–11. .

    Google Scholar 

  34. B.H. Rabin and R.M. German: Metall. Trans. A., 1988, vol. 19, pp. 1523–32. .

    Article  Google Scholar 

  35. H.I. Bakan, D. Heaney, and R.M. German: Powder Metall., 2001, vol. 44, pp. 235–42. .

    Article  CAS  Google Scholar 

  36. Z. Liu, X. Chen, Y. Li, and K. Hu: J. Iron Steel Res. Int., 2009, vol. 16, pp. 37–42. .

    Article  Google Scholar 

  37. H. Fu, Q. Xiao, J. Kuang, and J. Xing: Mater. Sci. Eng. A., 2017, vol. 466, pp. 160–5. .

    Article  CAS  Google Scholar 

  38. F. Li and Z. Li: J. Alloys Compd., 2014, vol. 587, pp. 267–72. .

    Article  CAS  Google Scholar 

  39. J.O. Andersson, T. Helander, L. Hoglund, P. Shi, and B. Sundman: Calphad., 2002, vol. 26, pp. 273–312. .

    Article  CAS  Google Scholar 

  40. Y. Yi, Q. Li, J. Xing, H. Fu, D. Yi, Y. Liu, and B. Zheng: Mater. Sci. Eng. A., 2019, vol. 754, pp. 129–39. .

    Article  CAS  Google Scholar 

  41. N. Tosangthum, P. Kunnam, M. Morakotjinda, W. Koetniyom, R. Krataitong, P. Wila, and R. Tongsri: Key Eng. Mater., 2019, vol. 798, pp. 9–16. .

    Article  Google Scholar 

  42. J. Karwan-Baczewska: Arch. Metall. Mater., 2011, vol. 56, pp. 789–96. .

    Article  CAS  Google Scholar 

  43. W. Koetniyom, P. Chantawet, N. Tosangthum, M. Morakotjinda, T. Yotkaew, P. Wila, and R. Tongsri: J. Met. Mater. Miner., 2019, vol. 29, pp. 22–30. .

    CAS  Google Scholar 

  44. R.M. German and K.A. D’Angelo: Int. Met. Rev., 1984, vol. 29, pp. 229–72. .

    Article  Google Scholar 

  45. P. Sang, H. Fu, Y. Qu, C. Wang, and Y. Lei: Werkstofftech., 2015, vol. 46, pp. 962–9. .

    Article  CAS  Google Scholar 

  46. X. Ren, H. Fu, J. Xing, Y. Yang, and S. Tang: J. Mater. Res., 2017, vol. 32, pp. 3078–88. .

    Article  CAS  Google Scholar 

  47. Y. Penghui, F. Hanguang, L. Guolu, L. Jinhai, and Z. Xuebo: Mater. Des., 2020, vol. 186, p. 108363. .

    Article  CAS  Google Scholar 

  48. M.A. Taha, A.F. Yousef, K.A. Gany, and H.A. Sabour: Mat.-wiss. u Werkstofftech., 2012, vol. 43, pp. 913–23. .

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. NRF-2020R1A5A6017701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Hyeon Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 22, 2020; accepted July 8, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 661 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, J., Kim, H.G., Lee, J. et al. Microstructure Modification of Liquid Phase Sintered Fe–Ni–B–C Alloys for Improved Mechanical Properties. Metall Mater Trans A 52, 4395–4401 (2021). https://doi.org/10.1007/s11661-021-06392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06392-5

Navigation