Skip to main content
Log in

Effects of chromium on the morphology and mechanical properties of Fe2B intermetallic in Fe-3.0B alloy

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the effects of chromium addition on the morphology and mechanical properties of Fe2B in Fe-3.0B alloy have been systematically investigated by a combination of experimental observations and the first-principles calculations. The results indicate that, with chromium addition in Fe-3.0B alloy ranging from 0 to 2.5 wt%, the average grain size of the boride firstly decreases and then increases slightly, mainly attributed to the volume fraction of coarse block boride. The nanoindentation hardness H of the boride remains almost constant while the elastic modulus E r firstly drops and then rises. Accordingly, the H/E r of the boride achieves a peak value at the chromium addition of 2.0 wt%, where the highest toughness is obtained. High-resolution transmission electron microscopy (HRTEM) observation demonstrates that the lattice of borides evolves from tetragonal to orthorhombic ((Fe, Cr)2B) after chromium addition, in good accordance with the calculation results. During the lattice evolution, a shrinkage of B–B bond along [002] direction is simultaneously revealed. The inherently weak B–B bond can be strengthened, which improves fracture toughness of Fe2B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Fig. 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Çetinkaya C (2006) Mater Des 27:437–445. https://doi.org/10.1016/j.matdes.2004.11.021

    Article  Google Scholar 

  2. Chen KM, Zhou Y, Li XX, Zhang QY, Wang L, Wang SQ (2015) Mater Des 65:65–78. https://doi.org/10.1016/j.matdes.2014.09.016

    Article  Google Scholar 

  3. Yasir M, Zhang C, Wang W, Xu P, Liu L (2015) Mater Des 88:207–213. https://doi.org/10.1016/j.matdes.2015.08.142

    Article  Google Scholar 

  4. Zhou Y, Zhang QY, Liu JQ, Cui XH, Mo JG, Wang SQ (2015) Wear 344–345:9–21. https://doi.org/10.1016/j.wear.2015.10.015

    Article  Google Scholar 

  5. Xu X, van der Zwaag S, Xu W (2016) Wear 348–349:80–88. https://doi.org/10.1016/j.wear.2015.11.017

    Google Scholar 

  6. Zambrano OA, Aguilar Y, Valdés J, Rodríguez SA, Coronado JJ (2016) Wear 348–349:61–68. https://doi.org/10.1016/j.wear.2015.11.019

    Article  Google Scholar 

  7. Zhang N, Zhang J, Lu L, Zhang M, Zeng D, Song Q (2016) Mater Des 89:815–822. https://doi.org/10.1016/j.matdes.2015.10.037

    Article  Google Scholar 

  8. ASM International Alloy Phase Diagram and the Handbook Committees (1992) ASM handbook, volume 3: alloy phase diagrams. ASM International, Materials Park, OH

    Google Scholar 

  9. Jian Y, Huang Z, Xing J, Guo X, Jiang K (2017) J Mater Res. https://doi.org/10.1557/jmr.2017.41

    Google Scholar 

  10. Jian Y, Huang Z, Xing J, Li J (2017) Wear 378–379:165–173. https://doi.org/10.1016/j.wear.2017.02.042

    Article  Google Scholar 

  11. Jian Y, Huang Z, Xing J, Guo X, Wang Y, Lv Z (2016) Tribol Int 103:243–251. https://doi.org/10.1016/j.triboint.2016.07.008

    Article  Google Scholar 

  12. Jian Y, Huang Z, Xing J et al (2016) Wear 362–363:68–77. https://doi.org/10.1016/j.wear.2016.04.029

    Article  Google Scholar 

  13. Jian Y, Huang Z, Xing J, Wang B (2015) Mater Charact 110:138–144. https://doi.org/10.1016/j.matchar.2015.10.017

    Article  Google Scholar 

  14. Lv Z, Fu H, Xing J, Huang Z, Ma S, Hu Y (2016) Corros Sci 108:185–193. https://doi.org/10.1016/j.corsci.2016.03.002

    Article  Google Scholar 

  15. Lv Z, Fu H, Xing J, Ma S, Hu Y (2016) J Alloy Compd 662:54–62. https://doi.org/10.1016/j.jallcom.2015.11.171

    Article  Google Scholar 

  16. Wang Y, Xing J, Ma S et al (2015) Corros Sci 98:240–248. https://doi.org/10.1016/j.corsci.2015.05.039

    Article  Google Scholar 

  17. Ma S, Xing J, He Y, Fu H, Li Y, Liu G (2016) Acta Mater 115:392–402. https://doi.org/10.1016/j.actamat.2016.06.016

    Article  Google Scholar 

  18. Zhang J, Gao Y, Xing J, Ma S, Yi D, Yan J (2011) Tribol Lett 44:31–39. https://doi.org/10.1007/s11249-011-9823-5

    Article  Google Scholar 

  19. Yi D, Xing J, Ma S et al (2011) Tribol Lett 45:427–435. https://doi.org/10.1007/s11249-011-9900-9

    Article  Google Scholar 

  20. Lentz J, Röttger A, Theisen W (2015) Acta Mater 99:119–129

    Article  Google Scholar 

  21. Musen L, Shaoli F, Wandong X, Ruihuang ZRY (1995) Acta Metall Sin 31:201–207

    Google Scholar 

  22. Frutos E, González-Carrasco JL (2013) Acta Mater 61:1886–1894. https://doi.org/10.1016/j.actamat.2012.12.009

    Article  Google Scholar 

  23. Jian S-R, Chen G-J, Hsu W-M (2013) Materials 6:4505–4513. https://doi.org/10.3390/ma6104505

    Article  Google Scholar 

  24. Zhang T, Feng Y, Yang R, Jiang P (2010) Scripta Mater 62:199–201. https://doi.org/10.1016/j.scriptamat.2009.10.025

    Article  Google Scholar 

  25. Oliver WC, Pharr GM (1992) J Mater Res 7:1564–1583

    Article  Google Scholar 

  26. Li X, Bhushan B (2002) Mater Charact 48:11–36

    Article  Google Scholar 

  27. Xiao B, Feng J, Zhou CT et al (2010) Physica B 405:1274–1278. https://doi.org/10.1016/j.physb.2009.11.064

    Article  Google Scholar 

  28. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  29. Xiao B, Xing JD, Ding SF, Su W (2008) Physica B 403:1723–1730. https://doi.org/10.1016/j.physb.2007.10.014

    Article  Google Scholar 

  30. W Lu, L Li, L Huang (2002) China Machine Press, Beijing

  31. Scandian C, Boher C, de Mello JDB, Rézaï-Aria F (2009) Wear 267:401–408. https://doi.org/10.1016/j.wear.2008.12.095

    Article  Google Scholar 

  32. H Chen, J Xing, W Li (2006) China Machine Press, Beijing

  33. Q Zhou (1986) Xi’an Jiaotong University Press, Xi’an: 18

  34. BB Mandelbrot, DE Passoja, AJ Paullay (1984)

  35. Radulovic M, Fiset M, Peev K, Tomovic M (1994) Journal of Materials Science 29:5085–5094. https://doi.org/10.1023/B:JMSC.0000007730.00517.65

    Article  Google Scholar 

  36. Zhou J, WANG Y, LIU Z (2000) J East China Univ Sci Technol 26:188–190

    Google Scholar 

  37. Anstis PCGR, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533–538

    Article  Google Scholar 

  38. Mukhopadhyay NK, Belger A, Paufler P, Kim DH (2007) Mater Sci Eng A 449–451:954–957. https://doi.org/10.1016/j.msea.2006.02.258

    Article  Google Scholar 

  39. Ozmetin AE, Sahin O, Ongun E, Kuru M (2015) J Alloy Compd 619:262–266. https://doi.org/10.1016/j.jallcom.2014.09.015

    Article  Google Scholar 

  40. Vincent S, Murty BS, Kramer MJ, Bhatt J (2015) Mater Des 65:98–103. https://doi.org/10.1016/j.matdes.2014.09.017

    Article  Google Scholar 

  41. Havinga E, Damsma H, Hokkeling P (1972) J Less Common Metals 27:169–186

    Article  Google Scholar 

Download references

Acknowledgements

Yongxin Jian thanks to Zhifu Huang, Jiandong Xing and Yimin Gao for their good advice. This work was supported by the National Natural Science Foundations of China (Grant No: 51371138 and 51571159), the Science and Technology Project of Guangdong Province in China (2015B090926009) and the Science and Technology Project of Guangzhou City in China (201604046009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifu Huang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, Y., Huang, Z., Xing, J. et al. Effects of chromium on the morphology and mechanical properties of Fe2B intermetallic in Fe-3.0B alloy. J Mater Sci 53, 5329–5338 (2018). https://doi.org/10.1007/s10853-017-1936-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1936-2

Keywords

Navigation