Skip to main content
Log in

Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steel with Chromium and Carbon

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Liquid phase sintering is an effective method to improve the densification of powder metallurgy materials. Boron is an excellent alloying element for liquid phase sintering of Fe-based materials. However, the roles of chromium and carbon, and particularly that of the former, on liquid phase sintering are still undetermined. This study demonstrated the effects of chromium and carbon on the microstructure, elemental distribution, boride structure, liquid formation, and densification of Fe-B-Cr and Fe-B-Cr-C steels during liquid phase sintering. The results showed that steels with 0.5 wt pct C densify faster than those without 0.5 wt pct C. Moreover, although only one liquid phase forms in Fe-B-Cr steel, adding 0.5 wt pct C reduces the formation temperature of the liquid phase by about 50 K (°C) and facilitates the formation of an additional liquid, resulting in better densification at 1473 K (1200 °C). In both Fe-B-Cr and Fe-B-Cr-C steels, increasing the chromium content from 1.5 to 3 wt pct raises the temperature of liquid formation by about 10 K (°C). Thermodynamic simulations and experimental results demonstrated that carbon atoms dissolved in austenite facilitate the eutectic reaction and reduce the formation temperature of the liquid phase. In contrast, both chromium and molybdenum atoms dissolved in austenite delay the eutectic reaction. Furthermore, the 3Cr-0.5Mo additive in the Fe-0.4B steel does not change the typical boride structure of M2B. With the addition of 0.5 wt pct C, the crystal structure is completely transformed from M2B boride to M3(B,C) boro-carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. M. Torralba, A. Navarro, and M. Campos: Mater. Sci. Eng. A, 2013, Vol. 573, pp. 253-56.

    Article  Google Scholar 

  2. H. Danninger, C. Xu, G. Khatibi, B. Weiss, and B. Lindqvist: Powder Metall., 2012, Vol. 55, pp. 378-87.

    Article  Google Scholar 

  3. J. Desbiens, E. Robert-Perron, C. Blais, and F. Chagnon: Mater. Sci. Eng. A, 2012, Vol. 546, pp. 218-22.

    Article  Google Scholar 

  4. M. Campos, J. Sicre-Artalejo, J. J. Munoz, and J. M. Torralba: Metall. Mater. Trans. A, 2010, Vol. 41A, pp. 1847-54.

    Article  Google Scholar 

  5. F. Bernier, P. Plamondon, J. P. Baïlon, and G. L’Espèrance: Powder Metall., 2011, Vol. 54, pp. 559-65.

    Article  Google Scholar 

  6. M. Gauthier, S. Metcalfe, S. Pelletier, and T. F. Stephenson: Powder Metall., 2011, Vol. 54, pp. 628-35.

    Article  Google Scholar 

  7. M. W. Wu, K. S. Hwang, and H. S. Huang: Metall. Mater. Trans. A, 2007, Vol. 38A, pp. 1598-1607.

    Article  Google Scholar 

  8. M. W. Wu, L. C. Tsao, G. J. Shu, and B. H. Lin: Mater. Sci. Eng. A, 2012, Vol. 538, pp. 135-44.

    Article  Google Scholar 

  9. M. W. Wu, G. J. Shu, S. Y. Chang, and B. H. Lin: Metall. Mater. Trans. A, 2014, Vol. 45A, pp. 3866-75.

    Article  Google Scholar 

  10. R. M. German, K. S. Hwang, and D. S. Madan: Powder Metall. Int., 1987, Vol. 19, pp. 15-18.

    Google Scholar 

  11. E. Dudrová, M. Selecká, R. Bureś, and M. Kabátová: ISIJ Int., 1997, Vol. 37, pp. 59-64.

    Article  Google Scholar 

  12. M. Selecká, A. Šalak, and H. Danninger: J. Mater. Process. Technol., 2003, Vol. 143-144, pp. 910-15.

    Article  Google Scholar 

  13. M. Sarasola, T. G. Acebo, and F. Castro: Acta Mater., 2004, Vol. 52, pp. 4615-22.

    Article  Google Scholar 

  14. A. Molinari, T. Pieczonka, J. Kazior, S. Gialanella, and G. Straffelini: Metall. Mater. Trans. A, 2000, Vol. 31A, pp. 1497-1506.

    Article  Google Scholar 

  15. M. Momeni, C. Gierl, H. Danninger, and A. Avakemian: Powder Metall., 2012, Vol. 55, pp. 54-64.

    Article  Google Scholar 

  16. J. Liu, A. Cardamone, T. Potter, R. M. German, and F. J. Semel: Powder Metall., 2000, Vol. 43, pp. 57-61.

    Article  Google Scholar 

  17. Z. Xiu, A. Salwen, X. Qin, F. He, and X. Sun: Powder Metall., 2003, Vol. 46, pp. 171-74.

    Article  Google Scholar 

  18. M. W. Wu, Metall. Mater. Trans. A, 2015, Vol. 46A, pp. 467–75.

    Article  Google Scholar 

  19. L. Lozada and F. Castro: Adv. Powder Metall. Part. Mater., 2011, Part 7, pp. 78–88.

  20. C. Menapace, A. Molinari, J. Kazior, and T. Pieczonka: Powder Metall., 2007, Vol. 50, pp. 326-35.

    Article  Google Scholar 

  21. H. Ö. Gulsoy: Scripta Mater., 2005, Vol. 52, pp. 187-92.

    Article  Google Scholar 

  22. T.B. Sercombe: Mater. Sci. Eng. A, 2003, Vol. 344, pp. 312-17.

    Article  Google Scholar 

  23. T. B. Sercombe and G. B. Schaffer: Mater. Sci. Eng. A, 2010, Vol. 528, pp. 751-55.

    Article  Google Scholar 

  24. A. Röttger, S. Weber, and W. Theisen: Mater. Sci. Eng. A, 2012, Vol. 532, pp. 511-21.

    Google Scholar 

  25. G. Cui and Z. Kou: J. Alloys Compd., 2014, Vol. 586, pp. 699-702.

    Article  Google Scholar 

  26. R. L. Lawcock and T. J. Davies: Powder Metall., 1990, Vol. 33, pp. 147-50.

    Article  Google Scholar 

  27. C. T. Huang and K. S. Hwang: Powder Metall., 1996, Vol. 39, pp. 119-23.

    Article  Google Scholar 

  28. A. Molinari, G. Straffelini, V. Fontanari, and R. Canteri: Powder Metall., 1992, Vol. 35, pp. 285-91.

    Article  Google Scholar 

  29. G. Straffelini, V. Fontanari, A. Molinari, and B. Tesi: Powder Metall., 1993, Vol. 36, pp. 135-41.

    Article  Google Scholar 

  30. S. Bueno, S. Saccarola, A. Karuppannagounder, A. Veiga, S. Sainz and F. Castro: Powder Metall., 2012, Vol. 55, pp. 92-94.

    Article  Google Scholar 

  31. N. Giguère and C. Blais: Metall. Mater. Trans. A, 2013, Vol. 44A, pp. 4774-87.

    Article  Google Scholar 

  32. L. Čiripová, E. Hryha, E. Dudrová, and A. Výrostková: Mater. Des., 2012, Vol. 35, pp. 619-25.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the Ministry of Science and Technology of the Republic of China for supports under Contract Number MOST 103-2221-E-027-132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Wei Wu.

Additional information

Manuscript submitted July 17, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, MW., Fan, YC., Huang, HY. et al. Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steel with Chromium and Carbon. Metall Mater Trans A 46, 5285–5295 (2015). https://doi.org/10.1007/s11661-015-3096-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3096-9

Keywords

Navigation