Skip to main content
Log in

Effects of Yttrium Content on the Three-Dimensional Compressive Creep Anisotropy of Mg-Y Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, the compressive creep behaviors of hot-rolled pure Mg (0Y alloy) and various hot-rolled Mg-Y binary alloys (0.15Y, 1.5Y, 4.5Y, 7.5Y, and 10.5Y alloys) at 523 K were systematically studied under various applied stresses. These alloys all had an average grain size of ~100 μm. The loading directions were parallel to the rolling direction (RD), transverse direction (TD), and normal direction (ND). The creep behaviors were shown to exhibit an obvious dependence on the loading direction in the 0Y, 0.15Y, 1.5Y, and 4.5Y alloys. The creep resistance had a sequence of ND > TD ≥ RD in these alloys. The creep anisotropy of the alloys was caused by 〈a〉 dislocation cross-slipping from the basal plane to the prismatic plane and {\( 10\bar{1}2 \)} twinning dominating the creep along the RD and TD, while dislocation climb and pyramidal 〈c + a〉 slip prevailed along the ND. Compared to the 0Y, 0.15Y, and 1.5Y alloys, the more random basal texture in the 4.5Y alloy weakened the cross-slip and twinning along the RD and TD and triggered cross-slip along the ND, resulting in decreased creep anisotropy. For the 7.5Y and 10.5Y alloys, an approximate creep isotropy due to cross-slip and pyramidal 〈c + a〉 slip dominated the creep along all three loading directions. Moreover, compared to the 0Y alloy, the creep resistance was found to be slightly increased in the 0.15Y alloy and significantly increased with increasing the Y content above 1.5 wt pct, which can be attributed to solution strengthening and the promoted pyramidal 〈c + a〉 dislocations collaboratively increasing the creep resistance. The improved hindering effect on twinning also helped to increase the creep resistance along the RD and TD. In addition, dynamic precipitation strengthening assisted the increment of creep resistance in the 10.5Y alloy. Thus, the addition of concentrated Y in Mg alloys is a valid solution to eliminate the compressive creep anisotropy and simultaneously enhance the creep resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. [1] B.L. Mordike and T.Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37-45.

    Article  Google Scholar 

  2. [2] T.M. Pollock: Science, 2010, vol. 328, pp. 986-87.

    Article  CAS  Google Scholar 

  3. [3] Z.X. Wu and W.A. Curtin: Nature, 2015, vol. 526, pp. 62-7.

    Article  CAS  Google Scholar 

  4. A. Suzuki, N.D. Saddock, J. Terbush, B. Powell, J. Jones, and T.M. Pollock: Magnesium Technology 2007, 2007, TMS, Warrendale, PA, pp. 375–80.

  5. [5] K. Milička, F. Dobeš, P. Pérez, G. Garcés and P. Adeva: Scr. Mater, 2009, vol. 61, pp. 1109-12.

    Article  CAS  Google Scholar 

  6. [6] W.Y. Huang, Q.H. Huo, Z.R. Zhang, J. Tang, A. Hashimoto and X.Y. Yang: J. Alloy. Comp, 2019, vol. 806, pp. 1105-08.

    Article  CAS  Google Scholar 

  7. [7] Y.X. Zhang, Z.Y. Xiao, Q.H. Huo, L. Luo, K.Y. Li, A. Hashimoto and X.Y. Yang; Mater. Sci. Eng. A, 2019, vol. 766, pp. 138336.

    Article  CAS  Google Scholar 

  8. [8] Z.Y. Xiao, Q.H. Huo, Y.X. Zhang, Z.R. Zhang, Z.H. Li, A. Hashimoto and X.Y. Yang: J. Alloy. Comp, 2020, vol. 823, pp. 153754.

    Article  CAS  Google Scholar 

  9. [9] S.R. Agnew and Ö. Duygulu: Int. J. Plast, 2005, vol. 21, pp. 1161-93.

    Article  CAS  Google Scholar 

  10. [10] N. Standford, K. Sotoudeh and P.S. Bate: Acta Mater, 2011, vol. 59, pp. 4866-74.

    Article  CAS  Google Scholar 

  11. [11] Y. Chino, K. Kimura, M. Hakamada and M. Mabuchi: Mater. Sci. Eng. A, 2008, vol. 485, pp. 311-17.

    Article  CAS  Google Scholar 

  12. [12] M. Suzuki, H. Sato, K. Maruyama and H. Oikawa: Mater. Sci. Eng. A, 1998, vol. 252, pp. 248-55.

    Article  Google Scholar 

  13. [13] J.G. Wang, L.M. Hsiung, T.G. Nieh and M. Mabuchi: Mater. Sci. Eng. A, 2001, vol. 315, pp. 81-8.

    Article  Google Scholar 

  14. [14] R.Z. Valiev and Y.T. Zhu: Mater. Sci. Eng. A, 2005, vol. 410-411, pp. 5-7.

    Article  CAS  Google Scholar 

  15. [15] S.M. Zhu, M.A. Gibson, M.A. Easton and J.F. Nie: Scr. Mater, 2010, vol. 63, pp. 698-703.

    Article  CAS  Google Scholar 

  16. [16] E. Oñorbe, G. Garcés, F. Dobes, P. Pérez and P. Adeva: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2869-83.

    Article  CAS  Google Scholar 

  17. [17] W.F. Xu, Y. Zhang, L.M. Peng, W.J. Ding and J.F. Nie: Acta Mater, 2015, vol. 84, pp. 317-29.

    Article  CAS  Google Scholar 

  18. [18] M. Suzuki, H. Sato, K. Maruyama and H. Oikawa: Mater. Sci. Eng. A, 2001, vol. 319-312, pp. 751-55.

    Article  Google Scholar 

  19. [19] N. Kashefi and R. Mahmudi: Mater. Des, 2012, vol. 39, pp. 200-10.

    Article  CAS  Google Scholar 

  20. [20] K. Maruyama, M. Suzuki and H. Sato: Metall. Mater. Trans. A, 2002, vol. 33, pp. 875-82.

    Article  CAS  Google Scholar 

  21. [21] S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi and R. Gonzalez-Martinez: Acta Mater, 2011, vol. 59, pp. 429-39.

    Article  CAS  Google Scholar 

  22. [22] J.P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, J.A. Wollmershauser and S.R. Agnew: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1347-62.

    Article  CAS  Google Scholar 

  23. [23] K. Kim, J.B. Jeon, N.J. Kim and B. Lee: Scr. Mater, 2015, vol. 108, pp. 104-08.

    Article  CAS  Google Scholar 

  24. [24] Z.G. Ding, W. Liu, H. Sun, S. Li, D.L. Zhang, Y.H. Zhao, E.J. Lavernia and Y.T. Zhu: Acta Mater, 2018, vol. 146, pp. 265-72.

    Article  CAS  Google Scholar 

  25. L.B. Hu, L.H, Zhan, Z.L. Liu, R.L. Shen, Y.L. Yang, Z.Y. Ma, M. Liu, Y.G. Yang, and X. Wang: Mater. Sci. Eng. A, 2017, vol. 703, pp. 496–502.

  26. [26] C.Y. Wang, Y.X. Zhang, Q.H. Huo, Z.R. Zhang, J. Tang, A. Hashimoto and X.Y. Yang: Mater. Sci. Eng. A, 2021, vol. 800, pp. 140309.

    Article  CAS  Google Scholar 

  27. [27] Y.X. Zhang, Z.Y. Xiao, Q.H. Huo, Z.R. Zhang, J. Tang, A. Hashimoto and X.Y. Yang: Mater. Sci. Eng. A, 2020, vol. 772, pp. 138843.

    Article  CAS  Google Scholar 

  28. [28] D.X. Zhao, X.L. Ma, S. Picak, I. Karaman and K. Xie: Scr. Mater, 2020, vol. 179, pp. 49-54.

    Article  CAS  Google Scholar 

  29. [29] D.X. Zhao, X.L. Ma, A. Srivastava, G. Turner, I. Karaman and K. Xie: Acta Mater, 2021, vol. 207, pp. 116691.

    Article  CAS  Google Scholar 

  30. [32] Y.X. Zhang, Q.H. Huo, Z.R. Zhang, Z.Y. Xiao, A. Hashimoto and X.Y. Yang: Mater. Char, 2021, vol. 172, pp. 110843.

    Article  CAS  Google Scholar 

  31. [33] A. Kula, X. Jia, R.K. Mishra and M. Niewczas: Int. J. Plast, 2017, vol. 92, pp. 96-121.

    Article  CAS  Google Scholar 

  32. R.X. Zheng, T. Bhattacharjee, S. Gao, W. Gong, A. Shibata, T. Sasaki, K. Hono, and N. Tsuji: Sci. Rep 9, 2019, vol. 11720, pp. 1–14.

  33. [35] W. Blum and P. Eisenlohr: Mater. Sci. Eng. A, 2009, vol. 510-511, pp. 7-13.

    Article  CAS  Google Scholar 

  34. [36] B.L. Mordike: Mater. Sci. Eng. A, 2002, vol. 324, pp. 103-12.

    Article  Google Scholar 

  35. [37] N. Standford, R.K.W. Marceau and M.R. Barnett: Acta Mater, 2015, vol. 82, pp. 447-56.

    Article  CAS  Google Scholar 

  36. [38] M.R. Barnett, Z. Keshavarz, A.G. Beer and D. Atwell: Acta Mater, 2004, vol. 52, pp. 5093-103.

    Article  CAS  Google Scholar 

  37. [39] J. Koike: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1689-96.

    Article  CAS  Google Scholar 

  38. [40] Z.Y. Xiao, Q.H. Huo, Z.R. Zhang, W.Y. Huang, L. Luo, Y.X. Zhang, A. Hashimoto and X.Y. Yang: J. Alloy. Compd, 2019, vol. 806, pp. 19-32.

    Article  CAS  Google Scholar 

  39. [41] P. Hidalgo-Manrique, V. Herrera-Solaz, J. Segurado, J. Llorca, F. Ga’lvez, O.A. Ruano, S.B. Yi and M.T. Pérez-Prado: Acta Mater, 2015, vol. 92, pp. 265–77.

    Article  CAS  Google Scholar 

  40. [42] W. Bontinck and S. Amelinckx: Phil. Mag, 1957, vol. 2, pp 94-6.

    Article  CAS  Google Scholar 

  41. [43] Z.J. Yu, Y.D. Huang, H. Dieringa, C.L. Mendis, R.G. Guan, N. Hort and J. Meng: Mater. Sci. Eng. A, 2015, vol. 645, pp. 213-24.

    Article  CAS  Google Scholar 

  42. [44] B. Jiang, D.D. Zhang, C. Sun, N.X. Li, Y.B. Liu and Z.Y. Cao: Mater. Sci. Eng. A, 2019, vol. 766, pp. 138388.

    Article  CAS  Google Scholar 

  43. [45] P. Chen, F.X. Wang and B. Li: Acta Mater, 2019, vol. 164, pp. 440-53.

    Article  CAS  Google Scholar 

  44. [46] J. Geng, M.F. Chisholm, R.K. Mishra and K.S. Kumar: Philos. Mag, 2005, vol. 95, pp. 3910-32.

    Article  CAS  Google Scholar 

  45. [47] M.R. Barnett: Mater. Sci. Eng. A, 2007, vol. 464, pp. 1-7.

    Article  CAS  Google Scholar 

  46. [48] J. Jiang, A. Godfrey, W. Liu and Q. Liu: Scr. Mater, 2008, vol. 58, pp. 122-25.

    Article  CAS  Google Scholar 

  47. [49] S.H. Park, J.H. Lee, B.G. Moon and B.S. You: J. Alloy. Comp, 2014, vol. 617, pp 277-80.

    Article  CAS  Google Scholar 

  48. [50] S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.-F. Zhu, J. Neugebauer and D. Raabe: Acta Mater, 2012, vol. 60, pp. 3011-21.

    Article  CAS  Google Scholar 

  49. [51] S. Sandlöbes, M. Friák, J. Neugebauer and D. Raabe: Mater. Sci. Eng. A, 2013, vol. 576, pp. 61-8.

    Article  CAS  Google Scholar 

  50. [52] D. Utt, A. Stukowski and M. Ghazisaeidi: Scr. Mater, 2020, vol. 182, pp. 53-6.

    Article  CAS  Google Scholar 

  51. H. Conrad and W.D. Robertson: JOM (J. Occup. Med), 1957, vol. 9, pp. 503–12.

  52. [54] H. Yoshinaga and R. Horiuchi: Trans. Japan Inst. Met, 1963, vol. 4, pp. 1-8.

    Article  CAS  Google Scholar 

  53. [55] Y. Liu and X. Wu: Metall. Mater. Trans. A, 2006, vol. 37, pp. 7-17.

    Article  CAS  Google Scholar 

  54. [56] J.C.M. Li and F.Q. Yang: Scr. Mater, 2003, vol. 48, pp. 991-95.

    Article  CAS  Google Scholar 

  55. [57] K.Y. Li, Q.H. Huo, Y.X. Zhang, C.Z. Zhang, W.Y. Huang, Y.X. Ye, A. Hashimoto and X.Y. Yang: Mater. Sci. Eng. A, 2020, vol. 771, pp. 138618.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support received from the National Natural Science Foundation of China (Grants No. 52071344, 51974376, and 51771230), the Key Research Program of Hunan Province (Grant No. 2019WK2062), and the Distinguished Professor Project of Central South University (Grant No. 202045009).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinghuan Huo or Xuyue Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 7, 2021; accepted June 4, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Huo, Q., Zhang, Z. et al. Effects of Yttrium Content on the Three-Dimensional Compressive Creep Anisotropy of Mg-Y Alloys. Metall Mater Trans A 52, 3910–3930 (2021). https://doi.org/10.1007/s11661-021-06352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06352-z

Navigation