Skip to main content
Log in

In-Situ γ-γ′ Lattice Parameter Evolution and Tertiary Burst Phenomena During Controlled Cooling of Commercial PM Nickel-Base Superalloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The γ and γ′ lattice parameter evolution of two commercial powder metallurgy (PM) nickel-base superalloys, ME3 and Rene’88DT, during cooling from above the γ′ prime solvus temperature is characterized using in-situ synchrotron X-ray Diffraction (XRD). The peak intensity deconvolution necessary for quantifying misfit between the two phases from XRD is accomplished by combining direct observation of several superlattice peak positions with thermodynamic modeling to quantify the intensity relationship between the overlapping phases. The misfit values obtained from the XRD measurements are compared to Scanning Electron Microscopy (SEM) observations of γ′ precipitate shapes for a subset of the experimental conditions where it can be observed that the exposures that result in cuboidal precipitate shapes are associated with the highest degrees of relative misfit. Time-resolved observations of the on-cooling lattice parameter evolution suggest a potential direct observation of the tertiary γ′ burst events in the two compositions within both the (100) superlattice peak and the (311) fundamental peak. The onset temperatures for the tertiary γ′ burst events for ME3 and Rene’88DT compositions for the cooling rates examined were found to be approximately 925 °C and 815 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. R.J. Mitchell, M.C Hardy, M. Preuss, S. Tin: Superalloys 2004, Proc. Int. Symp., 10th, pp. 361–70.

  2. [2] A.R.P. Singh, S. Nag, S. Chattopadhyay, Y. Ren, J. Tiley, G.B. Viswanathan, H.L. Fraser, R. Banerjee: Acta Mater., 2013, 61(1), pp. 280-293.

    Article  CAS  Google Scholar 

  3. [3] M. Li, J. Coakley, D. Isheim, G. Tian, B. Shallock: J. Alloys Compd., 2018, 732, pp. 765-776.

    Article  CAS  Google Scholar 

  4. [4] D.M. Collins, L. Yan, E.A. Marquis, L.D. Connor, J.J. Ciardiello, A.D. Evans, H.J. Stone: Acta Mater., 2013, 61(20), pp. 7791-7804.

    Article  CAS  Google Scholar 

  5. [5] X. Fan, A. Zhang, Z. Guo, X. Wang, J. Yang, J. Zou: JOM, 2019, 54(3), pp. 2680-2689

    CAS  Google Scholar 

  6. [6] F. Masoumi, D. Shahriari, M. Jahazi, J. Cormier, A. Devaux: Sci. Rep., 2016, 6(1), pp. 1-16.

    Article  Google Scholar 

  7. [7] C. Papadaki, W. Li, A.M. Korsunsky: Mater., 2018, 11(9), pp. 1528.

    Article  Google Scholar 

  8. [8] P.S. Mathur, J.L. Bartos: USAAMRDL-TR-76-30, General Electric Company, Lynn, MA, May 1977.

    Google Scholar 

  9. S.T. Wlodek, M. Kelly, D.A. Alden: Superalloys 1996, Proc. Int. Symp., 8th, pp. 129–36.

  10. T.P. Gabb, A. Garg, D.L. Ellis, and K. O’Conner: NASA Report, TM-2004-213066, 2004.

  11. [11] S.L. Semiatin, F. Zhang, R. Larsen, L.A. Chapman, D.U. Furrer: Integr. Mater. Manuf. Innov., 2016, 5(1), pp. 41-60.

    Article  Google Scholar 

  12. J. Gayda, T.P. Gabb, P.T. Kantzos, D.U. Furrer: NASA Report, TM-2002-211558, 2002.

  13. R.R. Unocic, L. Kovarik, C. Shen, P.M. Sarosi, Y. Wang, J. Li, M.J. Mills: Superalloys 2008, Proc. Int. Symp., 11th, pp. 377-385.

  14. [14] A.J. Goodfellow, L.R. Owen, K.A. Christofidou, J. Kelleher, M.C. Hardy, H.J. Stone: Metals, 2019, 9(6), pp. 700.

    Article  CAS  Google Scholar 

  15. [15] M.V. Nathal, R.A. Mackay, R.G. Garlick: Mater. Sci. Eng., 1985, 75(1-2), pp. 195-205.

    Article  CAS  Google Scholar 

  16. T.M. Pollock, S. Tin (2006) J. Propul. Power 22(2):361-374.

    Article  CAS  Google Scholar 

  17. [17] J.S. Van Sluytman, T.M. Pollock: Acta Mater., 2012, 60(4), pp. 1771-1783.

    Article  Google Scholar 

  18. A. Wisniewski, J. Beddoes (2009) Mater. Sci. Eng. A, 510:266-272.

    Article  Google Scholar 

  19. [19] S.L. Semiatin, S.L. Kim, F. Zhang, J.S. Tiley: Metall. Trans. A, 2015, 46(4), pp. 1715-1730.

    Article  CAS  Google Scholar 

  20. J. Mao, K. Chang, W. Yang, K. Ray, S. Vaze, D.U. Furrer: Metall. Trans. A, 2001, pp. 2441–52.

  21. T.P. Gabb, D.G. Backman, D.Y. Wei, D.P. Mourer, D. Furrer, A. Garg, D.L. Ellis: Superalloys 2000, Proc. Int. Symp., 9th, pp. 405–14.

  22. [22] R.A. Ricks, A.J. Porter, R.C. Ecob: Acta Metall., 1983, 31(1), pp. 43-53.

    Article  CAS  Google Scholar 

  23. [23] Y.S. Yoo, D.Y. Yoon, A.M. Henry: Metals and Materials, 1995, 1(1), pp. 47-61.

    Article  CAS  Google Scholar 

  24. A.G. Khachaturyan: Theory of Structural Transformations in Solids, Courier Corporation, Chelmsford, 2013.

    Google Scholar 

  25. [25] H.J. Stone, T.M. Holden, R.C. Reed: Acta Mater., 1999, 47(17), pp. 4435-4448.

    Article  CAS  Google Scholar 

  26. [26] R.Y. Zhang, H.L. Qin, Z.N. Bi, J. Li, S. Paul, T.L. Lee: Metall. Trans. A, 2020, 51(4), pp. 1860-1873.

    Article  CAS  Google Scholar 

  27. [27] D. M. Collins, D.J. Crudden, E. Alabort, T. Connolley, R.C. Reed: Acta Mater., 2015, 94, pp. 244-256.

    Article  CAS  Google Scholar 

  28. [28] M.C. Hardy, M. Detrois, E.T. McDevitt, C. Argyrakis, V. Saraf, P.D. Jablonski, S. Tin: Metall. Trans. A, 2020, 51(6), pp. 2626-2650.

    Article  CAS  Google Scholar 

  29. D.P. Mourer, K.R. Bain, P.L. Reynolds, J.J. Shirra, and T.P. Gabb: European Patent Application EP1 195 446 A1, 2000.

  30. T.P. Gabb, J. Gayda, D.F. Johnson, R.A. MacKay, R.B. Rogers, C.K. Sudbrack, A. Garg, I.E. Locci, S.L. Semiatin: NASA Report, 2016-218936, 2016.

  31. J. Cormier: Superalloys 2016, Proc. Int. Symp., 13th, pp. 383–94.

  32. A.P. Hammersley: ESRF Internal Report, ESRF97HA02T, 1997.

  33. [33] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Häusermann: High Pressure Res., 1996, 14, pp. 235-248.

    Article  Google Scholar 

  34. [34] B.E. Warren: X-Ray Diffraction. Addison-Wesley, Massachusetts, 1969.

    Google Scholar 

  35. [35] B.D. Cullity, S.R. Stock: Elements of X-ray Diffraction, 3rd ed., Prentice Hall, New Jersey, 2001, pp. 348-355.

    Google Scholar 

  36. [36] J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman: Calphad, 2002, 26, pp. 273-312.

    Article  CAS  Google Scholar 

  37. T.P. Gabb, A. Garg, D.L. Ellis: NASA Report, TM-2004-213123, 2004.

  38. G. Esteves, K. Ramos, C.M. Fancher, J.L. Jones: LIPRAS: Line-Profile Analysis Software, 2017. https://doi.org/10.13140/rg.2.2.29970.25282/3.

  39. D.A. Porter, K.E. Easterling, M.Y. Sherif: Phase Transformations in Metals and Alloys. 3rd ed., Taylor & Francis Group LLC, 2009.

  40. C. Shen, Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants (2014). https://www.osti.gov/servlets/purl/1134364.

  41. T.P. Gabb, J. Gayda, J. Telesman, P.T. Kantzos: NASA Report, 20050186902, 2005.

  42. S. Huang, K. An, Y. Gao, A. Suzuki (2018) Metall. Mater. Trans. A, 49(3):740–751.

    Article  CAS  Google Scholar 

  43. G.B. McBride (2005) Using Statistical Methods for Water Quality Management. Wiley, New York, pp. 305-313.

    Google Scholar 

  44. [44] J. Mao, K.M. Chang, W. Yang, D.U. Furrer, K. Ray, V.P. Vaze: Materials Science & Engineering A, 2002, 332(1-2), pp. 318-329.

    Article  Google Scholar 

  45. [45] D.M. Collins, N. D’Souza, C. Panwisawas, C. Papadaki, G.D. West, P. Kontis: Acta Mater., 2020, 200, pp.959-70.

    Article  CAS  Google Scholar 

  46. [46] S.L. Semiatin, N.C. Levkulich, J.S. Tiley: Metall. Trans. A, 2019, 50(11), 5281-5296.

    Article  CAS  Google Scholar 

  47. [47] J. Tiley, R. Srinivasan, R. Banerjee, G.B. Viswanathan, B. Toby, H.L. Fraser: Mater. Sci. Technol., 2009, 25(11), 1369-1374.

    Article  CAS  Google Scholar 

  48. [48] S.L. Semiatin, D.W. Mahaffey, N.C. Levkulich, O.N. Senkov, J.S. Tiley: Metall. Trans. A, 2018, 49(12), pp. 6265-6276.

    Article  CAS  Google Scholar 

  49. Y.U. Wang, Y.M. Jin, A.G. Khachaturyan (2002) J. Appl. Phys. 92(3):1351-1360.

    Article  CAS  Google Scholar 

  50. M. Akhlaghi, T. Steiner, S.R. Meka, E.J. Mittemeijer (2016) J. Appl. Crystallogr. 49(1):69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge GE Aviation for its financial support on this program. NJK acknowledges Jeffrey Williams for his editorial and technical support and Daryl Werner for his support in fabricating the furnace equipment used for this program. NJK and YG acknowledge Chen Shen for his thermodynamic modeling support. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Krutz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 11, 2020; accepted April 8, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutz, N.J., Gao, Y., Ren, Y. et al. In-Situ γ-γ′ Lattice Parameter Evolution and Tertiary Burst Phenomena During Controlled Cooling of Commercial PM Nickel-Base Superalloys. Metall Mater Trans A 52, 2973–2991 (2021). https://doi.org/10.1007/s11661-021-06292-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06292-8

Navigation