Skip to main content
Log in

Synchrotron In-Situ Aging Study and Correlations to the γ′ Phase Instabilities in a High-Refractory Content γ-γ′ Ni-Base Superalloy

  • Topical Collection: Superalloys and Their Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Detailed ex-situ electron microscopy and atom probe tomography (APT) were combined with in-situ synchrotron diffraction to systematically quantify the chemical, morphological, and lattice instabilities that occur during aging of a polycrystalline high-refractory content Ni-base superalloy. The morphological changes and splitting phenomenon associated with the secondary γ′ precipitates were related to a combination of discrete chemical composition variations at the secondary γ′/γ interfaces and additional chemical energy arising from γ precipitates that form within the secondary γ′ particles. The compositional phase inhomogeneities led to the precipitation of finely dispersed tertiary γ′ particles within the γ matrix and secondary γ particles within the secondary γ′ precipitates, which, along with surface grooving of the secondary γ′ particles, likely due to a spike in the lattice misfit at the particle interfaces, contributed to the splitting of the precipitates during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. C.T. Sims and W.C. Hagel: Superalloys: Science & Technology of Materials, John Wiley & Sons, Inc., Hoboken, NJ, 1973.

    Google Scholar 

  2. R.F. Decker and C.T. Sims: The Metallurgy of Nickel-Base Superalloys, Paul D. Merica Research Laboratory, 1972.

    Google Scholar 

  3. R.R. Unocic, G.B. Viswanathan, P.M. Sarosi, S. Karthikeyan, J. Li, and M.J. Mills: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 25–32.

    Article  Google Scholar 

  4. D. Locq, P. Caron, S. Raujol, F. Pettinari-Sturmel, A. Coujou, and N. Clement: Superalloys 2004 (10th Int. Symp.), TMS, Warrendale, PA, 2004, pp. 179–87.

  5. T.M. Pollock and S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361–74.

    Article  Google Scholar 

  6. D. Furrer and H. Fecht: JOM, 1999, vol. 51, pp. 14–17.

    Article  Google Scholar 

  7. R.R. Unocic, L. Kovarik, C. Shen, P.M. Sarosi, Y. Wang, J. Li, S. Ghosh, and M.J. Mills: Superalloys 2008 (11th Int. Symp.), TMS, Warrendale, PA, 2008, pp. 377–85.

  8. R.C. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, United Kingdom, 2006.

    Book  Google Scholar 

  9. G.W. Meetham: Met. Technol., 1984, vol. 11, pp. 414–18.

    Article  Google Scholar 

  10. M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, 2nd ed., ASM International, Materials Park, OH, 2002.

    Google Scholar 

  11. S. Antonov, M. Detrois, R.C. Helmink, and S. Tin: J. Alloys Compd., 2015, vol. 626, pp. 76–86.

    Article  Google Scholar 

  12. T.M. Pollock and R.D. Field: Dislocations in Solids, 2002, vol. 11, pp. 547–618.

    Article  Google Scholar 

  13. K.V. Vamsi and S. Karthikeyan: MATEC Web Conf., 2014, vol. 14, p. 11005.

    Article  Google Scholar 

  14. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1588–1603.

    Article  Google Scholar 

  15. H.A. Roth, C.L. Davis, and R.C. Thomson: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1329–35.

    Article  Google Scholar 

  16. S. Antonov, M. Detrois, D. Isheim, D.N. Seidman, R.C. Helmink, R.L. Goetz, E. Sun, and S. Tin: Mater. Des., 2015, vol. 86, pp. 649–55.

    Article  Google Scholar 

  17. P.M. Mignanelli, N.G. Jones, K.M. Perkins, M.C. Hardy, and H.J. Stone: Mater. Sci. Eng. A, 2015, vol. 621, pp. 265–71.

    Article  Google Scholar 

  18. M. Detrois, R.C. Helmink, and S. Tin: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5332–43.

    Article  Google Scholar 

  19. M. Detrois, S. Antonov, R.C. Helmink, and S. Tin: JOM, 2014, vol. 66, pp. 2478–85.

    Article  Google Scholar 

  20. S. Antonov, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, R.C. Helmink, E. Sun, and S. Tin: Mater. Sci. Eng. A, 2017, vol. 687, pp. 232–40.

    Article  Google Scholar 

  21. W. Ostwald: Z. Phys. Chemie, 1901, vol. 37, p. 385.

    Google Scholar 

  22. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  23. C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581–91.

    Google Scholar 

  24. A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 61–71.

    Article  Google Scholar 

  25. P. Cha, D. Yeon, and S. Chung: Scripta Mater., 2005, vol. 52, pp. 1241–45.

    Article  Google Scholar 

  26. M. Doi, and T. Miyazaki: Superalloys 1984 (5th Int. Symp.), TMS, Warrendale, PA, 1984, vol. 67, pp. 543–52.

  27. M. Doi, T. Miyazaki, and T. Wakatsuki: Mater. Sci. Eng., 1984, vol. 67, pp. 247–53.

    Article  Google Scholar 

  28. M. Doi, T. Miyazaki, and T. Wakatsuki: Mater. Sci. Eng., 1985, vol. 74, pp. 139–45.

    Article  Google Scholar 

  29. T. Miyazaki, H. Imamura, and T. Kozakai: Mater. Sci. Eng., 1982, vol. 54, pp. 9–15.

    Article  Google Scholar 

  30. F. Vogel, N. Wanderka, Z. Balogh, M. Ibrahim, P. Stender, G. Schmitz, and J. Banhart: Nat. Commun., 2013, vol. 4, p. 2955.

    Article  Google Scholar 

  31. M. Doi, D. Miki, T. Moritani, and T. Kozakai: Superalloys 2004 (10th Int. Symp.), TMS, Warrendale, PA, 2004, pp. 109–14.

  32. S. Behrouzghaemi and R.J. Mitchell: Mater. Sci. Eng. A, 2008, vol. 498, pp. 266–71.

    Article  Google Scholar 

  33. R.J. Mitchell, M. Preuss, M.C. Hardy, and S. Tin: Mater. Sci. Eng. A, 2006, vol. 423, pp. 282–91.

    Article  Google Scholar 

  34. R.J. Mitchell, M. Preuss, S.Tin, and M.C. Hardy: Mater. Sci. Eng. A, 2008, vol. 473, pp. 158–65.

    Article  Google Scholar 

  35. R.J. Mitchell and M. Preuss: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 615–27.

    Article  Google Scholar 

  36. S. Antonov, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, R.C. Helmink, E. Sun, and S. Tin: Scripta Mater., 2017, vol. 138, pp. 35–38.

    Article  Google Scholar 

  37. S. Antonov, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, E. Sun, and S. Tin: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 729–39.

    Article  Google Scholar 

  38. S. Antonov, W. Chen, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, E. Sun, and S. Tin: Metall. Mater. Trans. A, 2018, vol. 49A, 0000–00.

    Article  Google Scholar 

  39. P.L. Lee, D. Shu, M. Ramanathan, C. Preissner, J. Wang, M.A. Beno, R.B. Von Dreele, L. Ribaud, C. Kurtz, S.M. Antao, X. Jiao, and B.H. Toby: J. Synchrotron Radiat., 2008, vol. 15, pp. 427–32.

    Article  Google Scholar 

  40. S. Antonov, D. Isheim, D.N. Seidman, E. Sun, R.C. Helmink, and S. Tin: Proc. Int. Symp. on Superalloys, 2016, vol. 2016.

  41. Y. Mishima, S. Ochiai, and T. Suzuki: Acta Metall., 1985, vol. 33, pp. 1161–69.

    Article  Google Scholar 

  42. T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1–30.

    Article  Google Scholar 

  43. E. Nembach and G. Neite: Prog. Mater. Sci., 1985, vol. 29(3), pp. 177–319. https://doi.org/10.1016/0079-6425(85)90001-5.

    Article  Google Scholar 

  44. N. Saunders, A.P. Miodownik, and J.-P. Schillé: J. Mater. Sci., 2004, vol. 39, pp. 7237–43.

    Article  Google Scholar 

  45. D.M. Collins, D.J. Crudden, E. Alabort, T. Connolley, and R.C. Reed: Acta Mater., 2015, vol. 94, pp. 244–56.

    Article  Google Scholar 

  46. A.G. Khachaturyan and V.M. Airapetyan: Phys. Status Solidi, 1974, vol. 26, pp. 61–70.

    Article  Google Scholar 

  47. A.G. Khachaturyan, S.V. Semenovskaya, and J.W. Morris: Acta Metall., 1988, vol. 36, pp. 1563–72.

    Article  Google Scholar 

  48. A. Hazotte, T. Grosdidier, and S. Denis: Scripta Mater., 1996, vol. 34, pp. 601–08.

    Article  Google Scholar 

  49. Y. Chen, R. Prasath Babu, T.J.A. Slater, M. Bai, R. Mitchell, O. Ciuca, M. Preuss, and S.J. Haigh: Acta Mater., 2016, vol. 110, pp. 295–305.

    Article  Google Scholar 

  50. D.M. Collins, L. Yan, E.A. Marquis, L.D. Connor, J.J. Ciardiello, A.D. Evans, and H.J. Stone: Acta Mater., 2013, vol. 61, pp. 7791–1804.

    Article  Google Scholar 

  51. M.T. Lapington, D.J. Crudden, R.C. Reed, M.P. Moody, and P.A.J. Bagot: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 2302–10. https://doi.org/10.1007/s11661-018-4558-7.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support for this investigation was provided by Rolls-Royce Corporation. The authors thank Saul Lapidus for the help with the synchrotron setup and Dieter Isheim for the useful discussion on the atom probe data. Additionally, use of the Advanced Photon Source at Argonne National Laboratory was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stoichko Antonov.

Additional information

Manuscript submitted March 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, S., Sun, E. & Tin, S. Synchrotron In-Situ Aging Study and Correlations to the γ′ Phase Instabilities in a High-Refractory Content γ-γ′ Ni-Base Superalloy. Metall Mater Trans A 49, 3885–3895 (2018). https://doi.org/10.1007/s11661-018-4683-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4683-3

Navigation