Skip to main content

Advertisement

Log in

Enhancement of Nanostructured Ferritic Alloy 14YWT Properties via Heat Treatment for Post-Consolidation Processing

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nanostructured ferritic alloy 14YWT is a promising candidate for in-core use in generation IV nuclear reactors, due to a dense dispersion of insoluble, ultrafine-scale Y-Ti-O nano-oxides, which provide a high degree of irradiation tolerance and thermal stability. This study investigates the effects of heat treatment on the workability of 14YWT, along with the effect of processing history on abnormal grain structures and radial microstructural uniformity. In this study, a 14YWT rod consolidated at 850 °C was heat treated in argon at 1100 °C, 1150 °C, 1200 °C, or 1250 °C for 1 or 8 hours and changes in mechanical properties and microstructure were examined using microhardness and electron backscattered diffraction (EBSD). Two distinct types of large abnormal grains were observed, each with unique processing origins, including one with high and the other with low strain energy. Consolidation via direct extrusion resulted in radial microstructural gradients, where the center of the rod was softer with larger grain sizes and lower strain energies. These gradients persisted and intensified throughout heat treatment. Based upon this work, the recommended heat treatment for increased workability with minimal microstructural change is 1150 °C for 1 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.R. Odette: Scr. Mater., 2018, vol. 143, pp. 142–8.

    Article  CAS  Google Scholar 

  2. G.R. Odette: Jom, 2014, vol. 66, pp. 2427–41.

    Article  CAS  Google Scholar 

  3. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, and M. Fujiwara: J. Nucl. Mater., 1993, vol. 204, pp. 65–73.

    Article  CAS  Google Scholar 

  4. R. Lindau, A. Moslang, M. Schirra, P. Schlossmacher, and M. Klimenkov: J. Nucl. Mater., 2002, vol. 307–311, pp. 769–72.

    Article  Google Scholar 

  5. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, and T. Narita (2003) .ISIJ Int. 43: 2038-45

    Article  Google Scholar 

  6. S. Pal, M.E. Alam, S.A. Maloy, D.T. Hoelzer, and G.R. Odette: Acta Mater., 2018, vol. 152, pp. 338–57.

    Article  CAS  Google Scholar 

  7. D.T. Hoelzer, G.R. Odette, and M.J. Alinger: J. Nucl. Mater., 2007, vol. 367–370, pp. 166–72.

    Article  Google Scholar 

  8. N. Baluc, J.L. Boutard, S.L. Dudarev, M. Rieth, J.B. Correia, B. Fournier, J. Henry, F. Legendre, T. Leguey, M. Lewandowska, R. Lindau, E. Marquis, A. Muñoz, B. Radiguet, and Z. Oksiuta: J. Nucl. Mater., 2011, vol. 417, pp. 149–53.

    Article  CAS  Google Scholar 

  9. A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and T.F. Abe: J. Nucl. Mater., 2011, vol. 417, pp. 176–9.

    Article  CAS  Google Scholar 

  10. S. Ukai and M. Fujiwara: J. Nucl. Mater., 2002, vol. 307–311, pp. 749–57.

    Article  Google Scholar 

  11. C. Harvey, O. El Atwani, H. Kim, C. Lavender, M. McCoy, D. Sornin, J. Lewandowski, S.A. Maloy, and S. Pathak: Mater. Charact., 2021, vol. 171, p. 110744

    Article  CAS  Google Scholar 

  12. M.K. Miller and D.T. Hoelzer: J. Nucl. Mater., 2011, vol. 418, pp. 307–10.

    Article  CAS  Google Scholar 

  13. B.P. Eftink, M.E. Quintana, T.J. Romero, C. Xu, D.T. Hoelzer, T.A. Saleh, and S.A. Maloy: JOM, 2020, vol. 72, pp. 1703–9.

    Article  CAS  Google Scholar 

  14. L. Fave, M.A. Pouchon, M. Döbeli, M. Schulte-borchers, and A. Kimura: J. Nucl. Mater., 2014, vol. 445, pp. 235–40.

    Article  CAS  Google Scholar 

  15. W. Hoffelner: Materials for Nuclear Plants, Springer-Verlag, London, 2013.

    Book  Google Scholar 

  16. G.E. Dieter: Mechanical Metallurgy, 3rd edn., McGraw-Hill, New York, 1986.

    Google Scholar 

  17. G. Krauss: Steels: Processing, Structure and Performance, 2nd edn., ASM International, Materials Park, 2015.

    Book  Google Scholar 

  18. X.L. Wang, C.T. Liu, U. Keiderling, A.D. Stoica, L. Yang, M.K. Miller, C.L. Fu, D. Ma, and K. An: J. Alloys Compd., 2012, vol. 529, pp. 96–101.

    Article  CAS  Google Scholar 

  19. S. Ukai, T. Okuda, M. Fujiwara, S. Mizuta, and H. Nakashima: J. Nucl. Sci. Technol., 2012, vol. 39, pp. 872–9.

    Article  Google Scholar 

  20. J. Shen, H. Yang, Y. Li, S. Kano, Y. Matsukawa, Y. Satoh, and H. Abe: J. Alloys Compd., 2017, vol. 695, pp. 1946–55.

    Article  CAS  Google Scholar 

  21. N.J. Cunningham, M.J. Alinger, D. Klingensmith, Y. Wu, and G.R. Odette: Mater. Sci. Eng. A, 2016, vol. 655, pp. 355–62.

    Article  CAS  Google Scholar 

  22. D.T. Hoelzer, FCRD ODS Materials Development—FCRD-NFA1, in DOE-NE Materials Crosscut Coordination Meeting, Oak Ridge Natioal Laboratory, 2013.

  23. E. Aydogan, S.A. Maloy, O. Anderoglu, C. Sun, J.G. Gigax, L. Shao, F.A. Garner, I.E. Anderson, and J.J. Lewandowski: Acta Mater., 2017, vol. 134, pp. 116–27.

    Article  CAS  Google Scholar 

  24. D.T. Hoelzer, K.A. Unocic, M.A. Sokolov, and T.S. Byun: J. Nucl. Mater., 2016, vol. 471, pp. 251–65.

    Article  CAS  Google Scholar 

  25. ASTM E92-17, ASTM International, West Conshohocken, PA, 2017.

  26. D. Dingley: J. Microsc., 2004, vol. 213, pp. 214–24.

    Article  CAS  Google Scholar 

  27. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  28. R.E. Reed-Hill, L. Abbaschian, and R. Abbaschian: Physical Metallurgy Principles, 4th edn., Cengage Learning, Boston, 2009.

    Google Scholar 

  29. M. Alinger: Ph.D. Dissertation, University of California Santa Barbara, 2004.

  30. L. Toualbi, P. Olier, E. Rouesne, D. Bossu, and Y. De Carlan: Key Eng. Mater., 2013, vol. 554–557, pp. 118–26.

    Google Scholar 

  31. H. Zhang, Y. Huang, H. Ning, C.A. Williams, A.J. London, K. Dawson, Z. Hong, M.J. Gorley, C.R.M. Grovenor, G.J. Tatlock, S.G. Roberts, M.J. Reece, H. Yan, and P.S. Grant: J. Nucl. Mater., 2015, vol. 464, pp. 61–8.

    Article  CAS  Google Scholar 

  32. C. Hin and B.D. Wirth: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2056–61.

    Article  Google Scholar 

  33. N. Sallez, P. Donnadieu, E. Courtois-Manara, D. Chassaing, C. Kübel, F. Delabrouille, M. Blat-Yrieix, Y. de Carlan, and Y. Bréchet: J. Mater. Sci., 2015, vol. 50, pp. 2202–17.

    Article  CAS  Google Scholar 

  34. X. Gao, H. Ren, C. Li, H. Wang, Y. Ji, and H. Tan: J. Alloys Compd., 2016, vol. 663, pp. 316–20.

    Article  CAS  Google Scholar 

  35. P. Klugkist and C. Herzig: Phys. Status Solidi, 1995, vol. 148, pp. 413–21.

    Article  CAS  Google Scholar 

  36. E. Aydogan, C.J. Rietema, U. Carvajal-nunez, S.C. Vogel, M. Li, and S.A. Maloy: Crystals, 2019, vol. 9, p. 172.

    Article  Google Scholar 

  37. E. Aydogan, O. El-Atwani, S. Takajo, S.C. Vogel, and S.A. Maloy: Acta Mater., 2018, vol. 148, pp. 467–81.

    Article  CAS  Google Scholar 

  38. N. Sallez, X. Boulnat, A. Borbély, J.L. Béchade, D. Fabrègue, M. Perez, Y. De Carlan, L. Hennet, C. Mocuta, D. Thiaudière, and Y. Bréchet: Acta Mater., 2015, vol. 87, pp. 377–89.

    Article  CAS  Google Scholar 

  39. X. Boulnat, M. Perez, D. Fabregue, T. Douillard, M.H. Mathon, and Y. De Carlan: Metall. Mater. Trans. A , 2014, vol. 45, pp. 1485–97.

    Article  Google Scholar 

  40. X. Boulnat, D. Fabregue, M. Perez, M.H. Mathon, and Y. De Carlan: Metall. Mater. Trans. A 2013, vol. 44A, pp. 2461–65.

    Article  Google Scholar 

  41. N. Sallez, C. Hatzoglou, F. Delabrouille, D. Sornin, L. Chaffron, M. Blat-Yrieix, B. Radiguet, P. Pareige, P. Donnadieu, and Y. Bréchet: J. Nucl. Mater., 2016, vol. 472, pp. 118–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy (DOE), Office of Nuclear Energy’s Fuel Cycle Research and Development (FCRD) program, Advanced Fuel Campaign. Portions of this work were conducted as a part of the US DOE—Japanese Atomic Energy Agency Civilian Nuclear Working Group (DOE-JAEA CNWG). AJC and KDC acknowledge support from the US DOE Office of Nuclear Energy’s Nuclear Energy University Programs (NEUP) under funding opportunity announcement DE-FOA-0001515 and the Advanced Steel Processing and Products Research Center (ASPPRC) at Colorado School of Mines during the preparation of this manuscript.

Conflict of interest

The authors have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Rietema.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 8, 2020; accepted March 27, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rietema, C.J., Saleh, T.A., Hoelzer, D.T. et al. Enhancement of Nanostructured Ferritic Alloy 14YWT Properties via Heat Treatment for Post-Consolidation Processing. Metall Mater Trans A 52, 2821–2829 (2021). https://doi.org/10.1007/s11661-021-06275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06275-9

Navigation