Skip to main content
Log in

Effect of the Volume Energy Density and Heat Treatment on the Defect, Microstructure, and Hardness of L-PBF Inconel 625

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, we investigated the effect of the process parameters and heat treatment on the defect formation, microstructure, and hardness of Inconel 625 manufactured by the laser powder-bed fusion (L-PBF) process. Specimens were fabricated with various scan speeds, laser powers, and hatch spacing to give a range of volume energy density (VED) between 108 and 156 J/mm3. SEM analysis was conducted to identify the effects of the VED on the various defects. A columnar-dendritic microstructure was found in all specimens. The effect of heat treatment on the microstructure, including grain growth, carbide precipitations, and phase transformation, was also studied. The results of this study show that VED has an influential effect on the formation of defects, such as lack of fusion porosity, keyhole, gas pores, and micro-cracks. The microstructure and hardness dependency of the L-PBF Inconel 625 material on the VED and heat treatment emphasizes the importance of the optimum selection of VED and post-processing in the L-PBF manufacturing procedure. Finally, the hardness of the heat-treated and as-built specimens was measured, and their variations with VED were specified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted with permission from Ref. [31]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Most of the raw/processed data required to reproduce these findings have been given in the text. However, any additional data can be shared upon request.

References

  1. C. Weller, R. Kleer and F.T. Piller: Int. J. Prod. Econ., 2015, Vol. 164, pp. 43–56. http://dx.doi.org/10.1016/j.ijpe.2015.02.020

    Article  Google Scholar 

  2. S. Ford and M. Despeisse: J. Clean. Prod., 2016, Vol. 137, pp. 1573–1587. https://doi.org/10.1016/j.jclepro.2016.04.150

    Article  Google Scholar 

  3. A. Sola and A. Nouri: J. Adv. Manuf. Process., 2019, 1(3), pp. 1–21. doi:10.1002/amp2.10021

    Article  CAS  Google Scholar 

  4. J.A. Gonzalez, J. Mireles, S.W. Stafford, M.A. Perez, C.A. Terrazas and R.B. Wicker: J. Mater. Process. Tech., 2019, Vol. 264, pp. 200–210. https://doi.org/10.1016/j.jmatprotec.2018.08.031

    Article  CAS  Google Scholar 

  5. V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo and L. Alzina: Mater. Des., 2017, Vol 131, pp. 12–22. https://doi.org/10.1016/j.matdes.2017.05.065

    Article  CAS  Google Scholar 

  6. B. Dubiel and J. Sieniawski; Materials., 2019, Vol. 12, 1144. https://doi.org/10.3390/ma12071144

    Article  CAS  Google Scholar 

  7. J. Nguejio, F. Szmytka, S. Hallais, A. Tanguy, S. Nardone and M. GodinoMartinez: Mater. Sci. Eng. A, 2019, 764, 138214. doi: 10.1016/j.msea.2019.138214

    Article  CAS  Google Scholar 

  8. S. Li, Q. Wei, Y. Shi, Z. Zhu and D. Zhang: J. Mater. Sci. Tech., 2015, Vol. 31(9), pp. 946–952. http://dx.doi.org/10.1016/j.jmst.2014.09.020

    Article  CAS  Google Scholar 

  9. I.A. Choudhury, M.A. El-Baradie: J. Mater. Proc. Tech., 1998, Vol. 77(1–3), pp. 278–284. https://doi.org/10.1016/S0924-0136(97)00429-9

    Article  Google Scholar 

  10. C. Li, R. White, X.Y. Fang, M. Weaver and Y.B. Guo: Mater. Sci. Eng. A, 2017, Vol. 705, pp. 20–31. http://dx.doi.org/10.1016/j.msea.2017.08.058

    Article  CAS  Google Scholar 

  11. P. Liu, S. Sun, M. Cao, J. Gong and J. Hu: High. Temp. Mater. Processes, 2019, Vol. 38, pp. 229–236. https://doi.org/10.1515/htmp-2017-0182

    Article  CAS  Google Scholar 

  12. Z. Wang, K. Guan, M. Gao, X. Li, X. Chen and X. Zeng: J. Alloy. Compd., 2012, Vol. 513, pp. 518–523. https://doi.org/10.1016/j.jallcom.2011.10.107

    Article  CAS  Google Scholar 

  13. N.H. Sateesh, G.C. MohanKumar, K. Prasad, C.K. Srinivas and A.R. Vinod: Process. MatER. Sci., 2014, 5, pp. 772–779. doi:10.1016/j.mspro.2014.07.327

    Article  CAS  Google Scholar 

  14. L.N. Carter, X. Wang, N. Read, R. Khan, M. Aristizabal, K. Essa and M.M. Attallah: Mater. Sci. Tech., 2016, Vol. 32(7), pp. 657–661. https://doi.org/10.1179/1743284715Y.0000000108

    Article  CAS  Google Scholar 

  15. M. Amirjan and H. Sakiani: Int. J. Adv. Manuf. Technol., 2019, Vol. 103, pp. 1769–1780. https://doi.org/10.1007/s00170-019-03545-0

    Article  Google Scholar 

  16. I. Koutiri, E. Pessard, P. Peyre, O. Amlou and T. De Terrisa: J. Mater. Process. Tech., 2018, Vol. 255, pp. 536–546. https://doi.org/10.1016/j.jmatprotec.2017.12.043

    Article  CAS  Google Scholar 

  17. L.E. Criales, Y.M. Arısoy, B. Lane, S. Moylan, A. Donmez and T. Özel: Int. J. Mach. Tool. Manuf., 2017, Vol. 121, pp. 22–36. http://dx.doi.org/10.1016/j.ijmachtools.2017.03.004

    Article  Google Scholar 

  18. M.A. Anam, D. Pal and B. Stucker: Proceeding of the 24th Annual International Solid Free form Fabrication Symposium-An Additive Manufacturing Conference, Austin, TX, 2013, pp. 463–73. https://doi.org/10.13140/2.1.4009.1201

  19. K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan and F. Rezai: Mater. Sci. Eng. A, 2018, Vol. 735, pp. 182–190. https://doi.org/10.1016/j.msea.2018.08.037

    Article  CAS  Google Scholar 

  20. D. Zhang, W. Niu, X. Cao and Z. Liu: Mater. Sci. Eng. A, 2015, Vol. 644, pp. 32–40. https://doi.org/10.1016/j.msea.2015.06.021

    Article  CAS  Google Scholar 

  21. J.S. Zuback, P. Moradifar, Z. Khayat, N. Alem and T.A. Palmer: J. Alloy. Compd., 2019, Vol. 798, pp. 446–457. https://doi.org/10.1016/j.jallcom.2019.05.230

    Article  CAS  Google Scholar 

  22. C.C. Silva, H.C. de Miranda, M.F. Motta, J.P. Farias, C.R.M. Afonso and A.J. Ramirez: J. Mater. Res. Technol., 2013, Vol. 2(3), pp. 228–237. http://dx.doi.org/10.1016/j.jmrt.2013.02.008

    Article  CAS  Google Scholar 

  23. S.J. Foster, K. Carver, R.B. Dinwiddie, F. List III, K.A. Unocic, A. Chaudhary and S.S. Babu: Metal. Mater. Trans. A, 2018, Vol. 49, pp. 5775–5798. https://doi.org/10.1007/s11661-018-4870-2

    Article  CAS  Google Scholar 

  24. A. Kreitcberg, V. Brailovski and S. Turenne: Mater. Sci. Eng. A, 2017, Vol. 689, pp. 1–10. https://doi.org/10.1016/j.msea.2017.02.038

    Article  CAS  Google Scholar 

  25. S. Raghavan, B. Zhang, P. Wang, C.-N. Sun, M.L. SharonNai, T. Li and J. Wei: Mater. Manuf. Process., 2017, 32(14), pp. 1588–1595. doi:10.1080/10426914.2016.1257805

    Article  CAS  Google Scholar 

  26. G. Marchese, M. Lorusso, S. Parizia, E. Bassini, J.-W. Lee, F. Calignano, D. Manfredi, M. Terner, H.–U. Hong, D. Ugues, M. Lombardi and S. Biamino: Mater. Sci. Eng. A, 2018, Vol. 729, pp. 64–75. https://doi.org/10.1016/j.msea.2018.05.044

    Article  CAS  Google Scholar 

  27. E.A. Lass, M.R. Stoudt, M.B. Katz and M.E. Williams: Scripta. Mater., 2018, Vol. 154, pp. 83–86. https://doi.org/10.1016/j.scriptamat.2018.05.025

    Article  CAS  Google Scholar 

  28. A. El Hassanin, F. Scherillo, A.T. Silvestri, A. Caraviello, R. Sansone, A. Astarita and A. Squillace: AIP Conference Proceedings 2019, 2113, 060004. https://doi.org/10.1063/1.5112599

    Article  CAS  Google Scholar 

  29. EOS Nickel Alloy IN625 Material Data Sheet. Electro Optical Systems. https://dmlstechnology.com/images/pdf/EOS_NickelAlloy_IN625.pdf

  30. I.J. Moore, J.I. Taylor, M.W. Tracy, M.G. Burke and E.J. Palmiere: Mater. Sci. Eng. A, 2017, Vol. 682, pp. 402–409. http://dx.doi.org/10.1016/j.msea.2016.11.060

    Article  CAS  Google Scholar 

  31. H.R. Javidrad and S. Salemi: Int. J. Adv. Manuf. Technol., 2020, Vol. 107, pp. 4597–4607. https://doi.org/10.1007/s00170-020-05321-x

    Article  Google Scholar 

  32. C. Pleass and S. Jothi: Additive Manufacturing, 2018, Vol. 24, pp. 419–431. https://doi.org/10.1016/j.addma.2018.09.023

    Article  CAS  Google Scholar 

  33. M.M. Attallah, R. Jennings, X. Wang and L.N. Carter: MRS Bulletin, 2016, Vol. 41(10), pp. 758–764. https://doi.org/10.1557/mrs.2016.211

    Article  CAS  Google Scholar 

  34. F.H. Kim and S.P. Moylan: Advanced Manufacturing Series (NIST AMS), 2018, 100, 16. https://doi.org/10.6028/NIST.AMS.100-16

    Article  CAS  Google Scholar 

  35. H.‐Y. Wan, Z.‐J. Zhou, C.‐P. Li, G.‐F. Chen and G.‐P. Zhang: Adv. Eng. Mater., 2018, 20(10), 1800307. doi:10.1002/adem.201800307

    Article  CAS  Google Scholar 

  36. X. Zhang, H. Chen, L. Xu, J. Xu, X. Ren and X. Chen: Mater. Des., 2019, Vol. 183, 108105. https://doi.org/10.1016/j.matdes.2019.108105

    Article  CAS  Google Scholar 

  37. G. Marchese, G. Basile, E. Bassini, A. Aversa, M. Lombardi, D. Ugues, P. Fino and S. Biamino: Materials, 2018, Vol. 11, 106. https://doi.org/10.3390/ma11010106

    Article  CAS  Google Scholar 

  38. H. Xiao, S.M. Li, W.J. Xiao, Y.Q. Li, L.M. Cha, J. Mazumder and L.J. Song: Mater. Lett., 2017, Vol. 188, pp. 260–262. https://doi.org/10.1016/j.matlet.2016.10.118

    Article  CAS  Google Scholar 

  39. A.P.R. Mostafa, V. Brailovski, M. Jahazi and M. Medraj: Metals, 2017, 7(6), 196. doi:10.3390/met7060196

    Article  CAS  Google Scholar 

  40. C. Li, Y.B. Guo and J.B. Zhao: J. Mater. Process. Tech., 2017, Vol. 243, pp. 269–281. https://doi.org/10.1016/j.jmatprotec.2016.12.033

    Article  CAS  Google Scholar 

  41. S. Cao, D. Gu and Q. Shi: J. Alloy. Compd., 2017, Vol. 692, pp. 758–769. http://dx.doi.org/10.1016/j.jallcom.2016.09.098

    Article  CAS  Google Scholar 

  42. M. Cabrini, S. Lorenzi, C. Testa, F. Brevi, S. Biamino, P. Fino, D. Manfredi, G. Marchese, F. Calignano and T. Pastore: Materials, 2019, Vol. 12, 1742. https://doi.org/10.3390/ma12111742

    Article  CAS  Google Scholar 

  43. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins and F. Medina: Acta. Materialia., 2012, Vol. 60(5), pp. 2229–2239. https://doi.org/10.1016/j.actamat.2011.12.032

    Article  CAS  Google Scholar 

  44. G. Marchese, X.G. Colera, F. Calignano, M. Lorusso, S. Biamino, P. Minetola and D. Manfredi: Adv. Eng. Mater., 2016. https://doi.org/10.1002/adem.201600635

    Article  Google Scholar 

  45. F. Zhang, L.E. Levine, A.J. Allen, M.R. Stoudt, G. Lindwall, E.A. Lass, M.E. Williams, Y. Idell and C.E. Campbell: Acta. Materialia., 2018, Vol. 152, pp. 200–214. https://doi.org/10.1016/j.actamat.2018.03.017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Javidrad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 25, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javidrad, H.R., Salemi, S. Effect of the Volume Energy Density and Heat Treatment on the Defect, Microstructure, and Hardness of L-PBF Inconel 625. Metall Mater Trans A 51, 5880–5891 (2020). https://doi.org/10.1007/s11661-020-05992-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05992-x

Navigation