Skip to main content
Log in

Effect of Thermo-mechanical Treatment on High Temperature Tensile Properties and Ductile–Brittle Transition Behavior of Modified 9Cr-1Mo Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present work, a modified 9Cr-1Mo steel is subjected to normalizing and tempering treatment with or without an intermediate rolling, which was carried out at 1050 °C in austenitic phase and 550 °C in metastable austenitic phase. The tempering was carried out at 700 °C and 750 °C to improve the strength by precipitation hardening and refining the microstructure. The ductile to brittle-transition temperature (DBTT) and tensile properties have been evaluated at 20 °C, 550 °C and 650 °C for the material subjected to various thermomechanical treatments. Rolling performed in austenitic phase showed improvement in the upper shelf energy and reduction in the DBTT compared with the material rolled in metastable austenitic phase. Rolling in metastable austenitic phase improved the yield strength at elevated temperature (39 pct at 20 °C, 31 pct at 550 °C and 91 pct at 650 °C) and was accompanied by a reduction in ductility (21 pct at 20 °C, 32 pct at 550 °C and 35 pct at 650 °C) compared with the as-received condition. The influence of grain size, low angle boundaries and precipitates on DBTT and high temperature strength has been studied using EBSD and TEM analyses. An increase in high temperature strength is found to increase with the area fraction of fine M23C6/MX precipitates, whereas low angle boundaries and effective grain size influenced the DBTT behavior. The combined effect of precipitation strengthening and strain hardening leads to improvement in the high temperature mechanical strength while maintaining adequate toughness. The effect of aging (for 72 hours at 650 °C) on heat-treated and -rolled samples showed a small decrease in yield strength at 20 °C. A decreasing trend of fracture toughness is observed with the increase in yield strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. RL Klueh, AT Nelson: J. Nucl. Mater., 2007, vol. 371, pp. 37–52.

    Article  CAS  Google Scholar 

  2. Guidelines for application of the Master Curve approach to reactor pressure vessel integrity in nuclear power plants, IAEA, 2005.

  3. 3. S. Hollner, B. Fournier, J. Le Pendu, T. Cozzika, I. Tournié, J.C. Brachet and A. Pineau: J. Nucl. Mater., 2010, vol. 405, pp. 101–108.

    Article  CAS  Google Scholar 

  4. 4. J.H. Kim, J.H. Baek, S.H. Kim, C.B. Lee, K.S. Na and S.J. Kim: Ann. Nucl. Energy, 2011, vol. 38, pp. 2397–2403.

    Article  CAS  Google Scholar 

  5. 5. R.L. Klueh and J.M. Vitek: J. Nucl. Mater., 1991, vol. 182, pp. 230–239.

    Article  CAS  Google Scholar 

  6. 6. R.L. Klueh and J.M. Vitek: J. Nucl. Mater., 1985, vol. 132, pp. 27–31.

    Article  CAS  Google Scholar 

  7. 7. R.L. Klueh and J.M. Vitek: J. Nucl. Mater., 1985, vol. 137, pp. 44–50.

    Article  CAS  Google Scholar 

  8. 8. R.L. Klueh and J.M. Vitek: J. Nucl. Mater., 1989, vol. 161, pp. 13–23.

    Article  CAS  Google Scholar 

  9. W.L. Hu, D.S. Gelles, F.A. Garner, C.H. Henager Jr. and N. Igata (1987) ASTM STP 956. American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  10. 10. R.L. Klueh, D.J. Alexander, R.E. Stoller, A.S. Kumar and D.S. Gelles, ASTM STP 1125, American Society for Testing and Materials, Philadelphia, 1992.

    Google Scholar 

  11. R.L. Klueh, D.J. Alexander, Arvind S. Kumar, David S. Gelles and andy K. Nanstad (1994) ASTM STP 1175. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  12. 12. C. Wassilew and K. Ehrlich: J. Nucl. Mater., 1992, vol. 194, pp. 850–854.

    Article  Google Scholar 

  13. T. Karthikeyan, V. Thomaspaul, S. Saroja, A. Moitra, G. Sasikala and M. Vijayalakshmi: J. Nucl. Mater., 2011, vol. 419, pp. 256–262.

    Article  CAS  Google Scholar 

  14. 14. P. Yan, Z. Liu, H. Bao, Y. Weng and W. Liu: Mater. Des., 2014, vol. 54, pp. 874–879.

    Article  CAS  Google Scholar 

  15. 15. P.K. Parida, A. Dasgupta and S. Saibaba: J. Nucl. Mater., 2013, vol. 432, pp. 450–454.

    Article  CAS  Google Scholar 

  16. 16. C. Pandey, A. Giri and M.M. Mahapatra: Mater. Sci. Eng. A., 2016, vol. 657, pp. 173–184.

    Article  CAS  Google Scholar 

  17. 17. X. Gong, P. Marmy, L. Qin, B. Verlinden, M. Wevers and M. Seefeldt: J. Nucl. Mater., 2016, vol. 468, pp. 289–298.

    Article  CAS  Google Scholar 

  18. 18. Z.B. Zhang, O. V Mishin, N.R. Tao and W. Pantleon: J. Nucl. Mater., 2015, vol. 458, pp. 64–69.

    Article  CAS  Google Scholar 

  19. 19. S. Goyal and K. Laha: Mater. Sci. Eng. A., 2014, vol. 615, pp. 348–360.

    Article  CAS  Google Scholar 

  20. Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8/E8M-13a (2013).

  21. Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM E21-09 (2009).

  22. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM E23-12c (2013).

  23. Standard Test Method for Measurement of Fracture Toughness, ASTM E1820-13 (2014).

  24. 24. A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra and A.K. Bhaduri: Mater. Sci. Eng. A., 2014, vol. 618, pp. 219–231.

    Article  CAS  Google Scholar 

  25. R.L. Klueh and D.R. Harries: ASTM International, June 2001.

  26. 26. A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra and A.K. Bhaduri:. Mater. Sci. Eng. A, 2015, vol. 630, pp. 58–70.

    Article  CAS  Google Scholar 

  27. 27. J.I. Langford and A.J.C. Wilson: J. Appl. Crystallogr., 1978, vol. 11, pp. 102–113.

    Article  CAS  Google Scholar 

  28. 28. A. Sarkar and K.L. Murty: J. Nucl. Mater., 2015, vol. 456, pp. 287–291.

    Article  CAS  Google Scholar 

  29. 29. M. Gwoździk and Z. Nitkiewicz: Arch. Metall. Mater., 2013, vol. 58, pp. 31–34.

    Article  Google Scholar 

  30. 30. D. Fuloria, N. Kumar, S. Goel, R. Jayaganthan, S. Jha and D. Srivastava: Mater. Des., 2016, vol. 103, pp. 40–51.

    Article  CAS  Google Scholar 

  31. 31. B.N. Mordyuk, Y. V. Milman, M.O. Iefimov, G.I. Prokopenko, V. V. Silberschmidt, M.I. Danylenko and A. V. Kotko: Surf. Coatings Technol., 2008, vol. 202, pp. 4875–4883.

    Article  CAS  Google Scholar 

  32. Standard practise for conducting surveillance test for lightwater cooled nuclear power reactor vessels, ASTM E185-82e2, 1982.

  33. Guide on methods for assessing the acceptability of flaws in metallic structure, BS7910:1999, London, 1999.

  34. 34. A. Das, S.K. Das and S. Tarafder: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3138–3146.

    Article  CAS  Google Scholar 

  35. 35. D. Bhattacharjee and C.L. Davis: Scr. Mater., 2003, vol. 47, pp. 825–831.

    Article  Google Scholar 

  36. 36. S.S. Samant, I. V Singh and R.N. Singh: J. Mater. Eng. Perform., 2018, vol. 27, pp. 5898–5912.

    Article  CAS  Google Scholar 

  37. 37. S.S. Samant, I. V Singh and R.N. Singh: Mater. Sci. Eng. A., 2018, vol. 738, pp. 135–152.

    Article  CAS  Google Scholar 

  38. 38. C. Wang, M. Wang, J. Shi, W. Hui and H. Dong: Scr. Mater., 2008, vol. 58, pp. 492–495.

    Article  CAS  Google Scholar 

  39. 39. J.F. Knott, Fundamentals of Fracture Mechanics, Butterworths, London, 1973.

    Google Scholar 

  40. 40. A. Ghosh, S. Sahoo, M. Ghosh, R.N. Ghosh and D. Chakrabarti: Mater. Sci. Eng. A., 2014, vol. 613, pp. 37–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Bhabha Atomic Research Center (BARC), Mumbai, India, for providing the material and the Indian Institute of Technology, Roorkee, for the research facilities. This study did not receive any funding from any other source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 26, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samant, S.S., Singh, I.V. & Singh, R.N. Effect of Thermo-mechanical Treatment on High Temperature Tensile Properties and Ductile–Brittle Transition Behavior of Modified 9Cr-1Mo Steel. Metall Mater Trans A 51, 3869–3885 (2020). https://doi.org/10.1007/s11661-020-05846-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05846-6

Navigation