Skip to main content
Log in

Structural Evolution and Micromechanical Properties of Ternary Ni-Fe-Ti Alloy Solidified Under Microgravity Condition

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Both the microgravity solidification mechanism and resultant micromechanical properties of ternary Ni41Fe40Ti19 alloy were investigated by means of drop tube, nanoindentation, and nano-dynamic mechanical analysis (Nano-DMA) techniques. The microstructure of the Ni41Fe40Ti19 alloy droplets consisted of γ-(Fe,Ni) dendrites and interdendritic pseudobinary eutectic phases. The average cooling rate and undercooling increased significantly as the droplet diameter decreased during free fall. Owing to the refinement of the rapidly solidified microstructure, and the Ti solute hardening of the primary γ-(Fe,Ni) dendrites, the microhardness of this alloy was remarkably increased with the decrease of droplet size. Moreover, the nanohardness of the γ-(Fe,Ni) dendrite increased as the indentation displacement decreased within the depth range of 40 to 244 nm, indicating a conspicuous indentation size effect (ISE). However, the ISE increased as the undercooling increased, because additional geometrically necessary dislocations (GNDs) were required, while intragranular dislocation motion was further hindered as the Ti content increased. The size effect factor increased linearly with the reduced droplet diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.U. Mirihanage, D.J. Browne, G. Zimmermann, and L. Sturz: Acta Mater., 2012, vol. 60, pp. 6362-6371.

    Article  CAS  Google Scholar 

  2. L. Sturz, and G. Zimmermann: Microgr. Sci. Technol., 2006, vol. 18, pp. 160-164.

    Article  Google Scholar 

  3. O. Oloyede, T.D. Bigg, R.F. Cochrane, and A.M. Mullis: Mater. Sci. Eng. A, 2016, vol. 654, pp. 143-150.

    Article  CAS  Google Scholar 

  4. S. Kano, Y. Matsumura, and H. Uchida: J. Alloys Compd., 2006, vol. 408, pp. 331-334.

    Article  CAS  Google Scholar 

  5. Y.H. Wu, J. Chang, W.L. Wang, L. Hu, S.J. Yang, and B. Wei: Acta Mater., 2017, vol. 129, pp. 366-377.

    Article  CAS  Google Scholar 

  6. Z.L. Royer, C. Tackes, R. LeSar, and R.E. Napolitano: J. Appl. Phys., 2013, vol. 113, pp. 214901.

    Article  CAS  Google Scholar 

  7. Y. Ruan, X.J. Wang, and S.Y. Chang: Acta Mater., 2015, vol. 91, pp. 183-191.

    Article  CAS  Google Scholar 

  8. O. Oloyede, R.F. Cochrane, and A.M. Mullis: J. Alloys Compd., 2017, vol. 707, pp. 347-350.

    Article  CAS  Google Scholar 

  9. M. Erol, U. Böyük, T. Volkmann, and D.M. Herlach: J. Alloys Compd., 2013, vol. 575, pp. 96-103.

    Article  CAS  Google Scholar 

  10. Y. Ruan, Q.Q. Wang, S.Y. Chang, and B. Wei: Acta Mater., 2017, vol. 141, pp. 456-465.

    Article  CAS  Google Scholar 

  11. L. Cao, R.F. Cochrane, and A.M. Mullis: Intermetallics, 2015, vol. 60, pp. 33-44.

    Article  CAS  Google Scholar 

  12. A. Ilbagi, and H. Henein: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2152-2160.

    Article  CAS  Google Scholar 

  13. R.C. Toledo, J.S. Travelho, C.Y. An, and I.N. Bandeira: Microgravity Sci. Tec., 2014, vol. 26, pp. 119-124.

    Article  CAS  Google Scholar 

  14. R.N. Grugel, and L.N. Brush: Microgravity Sci. Tec., 2007, vol. 19, pp. 32-44.

    Article  CAS  Google Scholar 

  15. J. Fransaer, A.V. Wagner, and F. Spaepen: J. Appl. Phys., 2000, vol. 87, pp. 1801-1818.

    Article  CAS  Google Scholar 

  16. J. Chen, U. Dahlborg, C. Bao, M. Calvo-Dahlborg, and H. Henein: Metall. Mater. Trans. B, 2011, vol. 42, pp. 557-567.

    Article  CAS  Google Scholar 

  17. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner: Mater. Sci. Eng. A, 2004, vol. 378, pp. 24-33.

    Article  CAS  Google Scholar 

  18. H.J. Zhang, C. Li, Q.Y. Guo, Z.Q. Ma, H.J. Li, and Y.C. Liu: Scripta Mater., 2019, vol. 164, pp. 66-70.

    Article  CAS  Google Scholar 

  19. Y.U. Heo, M. Takeguchi, K. Furuya, and H.C. Lee: Acta Mater. 2009, vol. 57, pp. 1176-1187.

    Article  CAS  Google Scholar 

  20. S. Mokadem, C. Bezençon, A. Hauert, A. Jacot, and W. Kurz: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1500-1510.

    Article  CAS  Google Scholar 

  21. N. Anento, A. Serra, and Y. Osetsky: Acta Mater., 2017, vol. 132, pp. 367-373.

    Article  CAS  Google Scholar 

  22. K.P. Gupta: J. Phase Equilib., 2001, vol. 22, pp. 171-175.

    Article  CAS  Google Scholar 

  23. Fe-Ni-Ti Ternary Phase Diagram Evaluation, MSI Materials Science International Services GmbH, Stuttgart, 2014, https://materials.springer.com/msi/docs/sm_msi_r_10_010608_01. Accessed 11 Mar 2019.

  24. L.I. Duarte, U.E. Klotz, C. Leinenbach, M. Palm, F. Stein, and J.F. Löffler: Intermetallics, 2010, vol. 18, pp. 374-384.

    Article  CAS  Google Scholar 

  25. A. Wu, J. Gao, X. Chen, X. Yang, and H. Yang: J. Alloys Compd., 2014, vol. 583, pp. 55-59.

    Article  CAS  Google Scholar 

  26. T.G. Woodcock, O. Shuleshova, B. Gehrmann, and W. Löser: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2906-2913.

    Article  CAS  Google Scholar 

  27. R.L. Orban, M. Lucaci, N. Jumate, and D. Salomie: Mater. Sci. Forum, 2011, vol. 672, pp. 183-186.

    Article  CAS  Google Scholar 

  28. N. Hansen: Scripta Mater., 2004, vol. 51, pp. 801-806.

    Article  CAS  Google Scholar 

  29. T.S. Jun, D.E.J. Armstrong, and T.B. Britton: J. Alloys Compd., 2016, vol. 672, pp. 282-291.

    Article  CAS  Google Scholar 

  30. K. Liu, M. Ostadhassan, B. Bubach, R. Dietrich, and V. Rasouli: J. Mater. Sci., 2017, vol. 53, pp. 4417-4432.

    Article  CAS  Google Scholar 

  31. Y.V. Milman, A.A. Golubenko, and S.N. Dub: Acta Mater., 2011, vol. 59, pp. 7480-7487.

    Article  CAS  Google Scholar 

  32. M. Haghshenas, A. Khalili, and N. Ranganathan: Mater. Sci. Eng. A, 2016, vol. 676, pp. 20-27.

    Article  CAS  Google Scholar 

  33. F. Javaid, E. Bruder, and K. Durst: Acta Mater., 2017, vol. 139, pp. 1-10.

    Article  CAS  Google Scholar 

  34. A. Prasitthipayong, S.J. Vachhani, S.J. Tumey, A.M. Minor, and P. Hosemann: Acta Mater., 2018, vol. 144, pp. 896-904.

    Article  CAS  Google Scholar 

  35. P. Gu, M. Dao, and S. Suresh: Acta Mater., 2014, vol. 67, pp. 409-417.

    Article  CAS  Google Scholar 

  36. U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay: Acta Mater., 2005, vol. 53, pp. 705-717.

    Article  CAS  Google Scholar 

  37. W.D. Nix, and H. Gao: J. Mech. Phys. Solids, 1998, vol. 46, pp. 411-425.

    Article  CAS  Google Scholar 

  38. N.A. Stelmashenko, M.G. Walls, L.M. Brown, and Y.V. Milman: Acta Metall. Mater., 1993, vol. 41, pp. 2855-2865.

    Article  CAS  Google Scholar 

  39. M.S.D. Guzman, G. Neubauer, P. Flinn, and W.D. Nix: Soc. Symp. Proc., 1993, vol. 308, pp. 613-618.

    Article  Google Scholar 

  40. K. Durst, O. Franke, A. Böhner, and M. Göken: Acta Mater., 2007, vol. 55, pp. 6825-6833.

    Article  CAS  Google Scholar 

  41. J. Jang, B.G. Yoo, Y.J. Kim, J.H. Oh, I.C. Choi, and H. Bei: Scripta Mater., 2011, vol. 64, pp. 753-756.

    Article  CAS  Google Scholar 

  42. W. Oliver, and G. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564-1583.

    Article  CAS  Google Scholar 

  43. W.F. Gale, and T.C. Totemeir: Smithells Metals Reference Book, 8th ed, Elsevier Butterworth-Heinemann, Burlington, 2004.

    Google Scholar 

  44. Thermal Properties of the Elements, NETZSCH, Deutschland, 2017, https://www.netzsch.com/TPoE. Accessed 18 Mar 2019.

  45. E. Lee, and S. Ahn: Acta Metall. Mater., 1994, vol. 42, pp. 3231-3243.

    Article  CAS  Google Scholar 

  46. P.S. Grant, B. Cantor, and L. Katgerman: Acta Metall. Mater., 1993, vol. 41, pp. 3097-3108.

    Article  CAS  Google Scholar 

  47. W. Kurz, and D.J. Fisher: Fundamentals of Solidification, Trans. Tech. Publications, 1989.

    Google Scholar 

  48. J.D. Hunt, and K.A. Jackson: J. Appl. Phys., 1966, vol. 37, pp. 254-257.

    Article  CAS  Google Scholar 

  49. S.B. Kadambi, V.D. Divya, and U. Ramamurty: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4574-4582.

    Article  CAS  Google Scholar 

  50. R. Labusch: Phys. Status Solid., 1970, vol. 41, pp. 659–669.

    Article  Google Scholar 

  51. Y. Ruan, A. Mohajerani, and M. Dao: Sci. Rep., 2016, vol. 6, pp. 31684.

    Article  CAS  Google Scholar 

  52. I. Manika, and J. Maniks: Acta Mater., 2006, vol. 54, pp. 2049-2056.

    Article  CAS  Google Scholar 

  53. B. Yang, and H. Vehoff: Acta Mater., 2007, vol, 55, pp. 849-856.

    Article  CAS  Google Scholar 

  54. L.Y. Xu, S.T. Zhang, H.Y. Jing, L.X. Wang, J. Wei, X.C. Kong, and Y.D. Han: J. Electron. Mater., 2017, vol, 47, pp. 612-619.

    Article  CAS  Google Scholar 

  55. N. Van Steenberge, J. Sort, A. Concustell, J. Das, S. Scudino, S. Suriñach, J. Eckert, and M.D. Baró: Scripta Mater., 2007, vol, 56, pp. 605-608.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. U1806219, U1660108 and 51327901) and the Fundamental Research Funds for the Central Universities (Grant No. 3102018jgc009). The authors are very grateful to Mr. L.Y. Li for his help with the experiments. They also thank Porf. D.L. Geng and Dr. Q.F. Wang for their supports and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Ruan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 3, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ruan, Y. & Wei, B. Structural Evolution and Micromechanical Properties of Ternary Ni-Fe-Ti Alloy Solidified Under Microgravity Condition. Metall Mater Trans A 51, 3461–3472 (2020). https://doi.org/10.1007/s11661-020-05792-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05792-3

Navigation