Skip to main content
Log in

Microstructural Transitions in Commercial Fe-Ni–Based Soft-Magnetic Alloys Quenched from Undercooled Liquid Droplets

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Liquid droplets of three commercial Fe-Nibased alloys were undercooled to different temperatures by electromagnetic levitation and quenched. Discontinuous changes in the grain size and microstructure as a function of melt undercooling (ΔT) were observed in all three alloys. At ΔT < 80 K, fine, equiaxed grains with a substructure consisting of spherical elements were observed. In the range 80 K < ΔT < 155 K, the microstructure consisted of colonies of columnar dendrites. The colonies were two orders of magnitude larger than the equiaxed grains reported at lower ΔT. At ΔT > 155 K, the equiaxed grains with a substructure of spherical elements returned. The critical undercoolings at which the microstructural transitions occur (ΔT * 1 = 80 K and ΔT * 2 = 155 K) show good agreement with those for similar binary systems. The results were successfully described by calculating the time needed for breakup of the primary dendrites as a function of ΔT and comparing this to the time during which the sample temperature is above the solidus due to recalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.M. Herlach, R.F. Cochrane, I. Egry, H.J. Fecht, A.L. Greer: Int. Mater. Rev., 1993, vol. 38 (6), pp. 273–347

    CAS  Google Scholar 

  2. J.L. Walker: Physical Chemistry of Process Metallurgy, Part 2, Interscience, New York, NY, 1961, pp. 845–53

  3. L.A. Tarshis, J.L. Walker, J.W. Rutter: Metall. Trans., 1971, vol. 2, pp. 2589–97

    Article  CAS  Google Scholar 

  4. T.Z. Kattamis, M.C. Flemings: Trans. TMS-AIME, 1966, vol. 236, pp. 1523–32

    CAS  Google Scholar 

  5. M. Schwarz, A. Karma, K. Eckler, D.M. Herlach: Phys. Rev. Lett., 1994, vol. 73 (10), pp. 1380–83

    Article  CAS  Google Scholar 

  6. D.M. Herlach, K. Eckler, A. Karma, M. Schwarz: Mater. Sci. Eng. A, 2001, vols. 304–306, pp. 20–25

    Google Scholar 

  7. Y.Z. Chen, G.C. Yang, F. Liu, N. Liu, H. Xie, Y.H. Zhou: J. Cryst. Growth, 2005, vol. 282, pp. 490–97

    Article  CAS  Google Scholar 

  8. N. Liu, F. Liu, G. Yang, Y. Chen, D. Chen, C. Yang, Y. Zhau: Physica B, 2007, vol. 387, pp. 151–55

    Article  CAS  Google Scholar 

  9. P.K. Galenko, G. Phanikumar, O. Funke, L. Chernova, S. Reutzel, M. Kolbe, D.M. Herlach: Mater. Sci. Eng. A, 2007, vols. 449–451, pp. 649–53

    Google Scholar 

  10. K.F. Kobayashi, P.H. Shingu: J. Mater. Sci., 1988, vol. 23, pp. 2157–66

    Article  CAS  Google Scholar 

  11. L. Feng, Y. Gencang, G. Xuefeng: Mater. Sci. Eng. A, 2001, vol. 311, pp. 54–63

    Article  Google Scholar 

  12. D.M. Herlach, P. Galenko, and D. Holland-Moritz: in Metastable Solids from Undercooled Melts, Pergamon Materials Series, R. Cahn, ed., Elsevier, Amsterdam, 2007

  13. A. Karma: Int. J. Non-Equil. Proc., 1998, vol. 11 (2), pp. 201–33

    CAS  Google Scholar 

  14. K.A. Jackson, J.D. Hunt, D.R. Uhlmann, T.P. Seward: Trans. TMS-AIME, 1966, vol. 236, pp. 149–58

    CAS  Google Scholar 

  15. M. Schwarz: Ph.D. Thesis, Ruhr Universität Bochum, Germany, 1998

  16. P.K. Galenko, D.A. Danilov: Phys. Lett. A, 1997, vol. 325 (3), pp. 271–80

    Article  Google Scholar 

  17. Pernifer36, Material Data Sheet No. 7001, Mar. 2004 ed., ThyssenKrupp VDM GmbH

  18. Magnifer50, Material Data Sheet No. 9002, Aug. 2002 ed., ThyssenKrupp VDM GmbH

  19. Magnifer7904, Material Data Sheet No. 9004, Aug. 2000 ed., ThyssenKrupp VDM GmbH

  20. R.F. Cochrane, D.M. Herlach, B. Feuerbacher: Mater. Sci. Eng. A, 1991, vol. 133, pp. 706–10

    Article  Google Scholar 

  21. P.K. Galenko, D.A. Danilov: Phys. Lett. A, 1997, vol. 235 (3), pp. 271–80

    Article  CAS  Google Scholar 

  22. P.K. Galenko, D.A. Danilov: J. Cryst. Growth, 1999, vol. 197 (4), pp. 992–1002

    Article  CAS  Google Scholar 

  23. E. Brener and D. Temkin: unpublished research, Forschungszentrum Julich, Germany, 1996.

  24. H. Müller-Krumbhaar, T. Abel, E. Brener, M. Hartmann, N. Eissfeldt, D. Temkin: JSME Int. J. B, 2002, vol. 45 (1), pp. 129–32

    Article  Google Scholar 

  25. W. Löser, D.M. Herlach: Metall. Trans. A, 1992, vol. 23A, pp. 1585–91

    Google Scholar 

  26. W. Kurz, D.J. Fisher: Fundamentals of Solidification, 3rd ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1992, p. 294

    Google Scholar 

  27. A. Gabriel, P. Gustafson, I. Ansara: CALPHAD, 1987, vol. 11 (2), pp. 203–18

    Article  CAS  Google Scholar 

  28. Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., ASM INTERNATIONAL, Materials Park, OH, 1992

  29. G. Pottlacher, H. Hosaeus, B. Wilthan, E. Kaschnitz, A. Seifter: Thermochimica Acta, 2002, vol. 382, pp. 255–67

    Article  CAS  Google Scholar 

  30. Y. Sato, K. Sugisawa, D. Aoki, T. Yamamura: Meas. Sci. Technol., 2005, vol. 16, pp. 363–71

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank H.-G. Lindenkreuz for performing the quenching experiments, B. Bartusch for the DSC measurements, and Dr. P.K. Galenko (DLR Köln) for helpful discussions. Financial support for this work was provided by the European Space Agency under the MAP, Project No. AO 99-101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.G. Woodcock.

Additional information

Manuscript submitted April 24, 2008.

Appendix I

Appendix I

Calculation Parameters

Parameter (Unit)

P36

M50

M79

Source

x (at. pct)

Fe-34.85Ni-0.7C

Fe-48.17Ni-0.09C

Fe-84.11Ni-0.1C

[1719]*

k Fe-Ni

0.944

0.988

0.98

[27]**

k Fe-C

0.174

0.205

0.205

[28]**

m l(Fe-Ni) (K/at. pct)

−1

−0.15

0.65

[27]**

m l(Fe-C) (K/at. pct)

−16.9

−17.8

−17.8

[28]**

T l (K)

1750

1733

1727

DSC*

T s (K)

1726

1710

1702

DSC*

ΔH f  (J/g)

304

322

311

DSC*

C pliq at T l  (J/g/K)

0.76

0.75

0.74

[27]**

C psol at RT (J/g/K)

0.68

0.68

0.67

[27]**

ρ liq at T l (gcm−3)

7.55

7.55

7.55

[29]

ρ sol at RT (gcm−3)

8.1

8.25

8.7

[1719]*

α liq at T l  (m2/s)

4.92 × 10−6

4.88 × 10−6

4.86 × 10−6

[29]

η liq at T l (mPas)

0.75

0.74

0.71

[30]**

D liq (m2/s)

6 × 10−9

6 × 10−9

6 × 10−9

assumed

V DF  (m/s)

3

3

3

assumed

V D  (m/s)

25

25

25

assumed

d o  (m)

8.52 × 10−10

7.84 × 10−10

7.89 × 10−10

calculated

μ K (ms−1 K−1)

1.01

2.95

1.095

calculated

ε c  (pct)

2

2

2

assumed

a 1, a 2, σ 0

0.3, 0.1, 30

0.3, 0.1, 30

0.3, 0.1, 30

assumed

  1. The term x = ternary analogue composition; k i-j and m l(i-j) are the equilibrium partition coefficient and liquidus slope of the i-j binary system at the pseudo-binary composition; T l  = liquidus; T s  = solidus; ΔH f = latent heat of fusion; C pi and ρ i are the specific heat capacity and density of phase I; α liq, η liq, and D liq are the thermal diffusivity, viscosity, and diffusivity of the liquid; V DF  = diffusion speed at the interface; V D  = solute diffusion speed in the liquid; d 0 = capillary length; μ K  = kinetic growth coefficient; ε c  = crystalline anisotropy of the interfacial energy; and a1, a2, and σ 0 are the stability constants. *Data from alloys studied here. **Data from binary Fe-Ni (or Fe-C). Data taken from Inconel 718

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodcock, T., Shuleshova, O., Gehrmann, B. et al. Microstructural Transitions in Commercial Fe-Ni–Based Soft-Magnetic Alloys Quenched from Undercooled Liquid Droplets. Metall Mater Trans A 39, 2906–2913 (2008). https://doi.org/10.1007/s11661-008-9635-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9635-x

Keywords

Navigation