Skip to main content

Advertisement

Log in

Interdiffusion in β (BCC) Phase of the Ti-Al-Mn System at 1100 °C

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Interdiffusion was studied on the titanium-rich side of ternary β (BCC) Ti-Al-Mn system at 1100 °C by the solid-solid diffusion couple technique. Ternary interdiffusion coefficients were evaluated at 13 different compositions using the Kirkaldy’s approach. It was observed that the main coefficients, \( \tilde{D}_{\text{TiTi}}^{{ {\text{Al }}}} \) and \( \tilde{D}_{\text{MnMn}}^{{ {\text{Al }}}} \), are positive while the cross terms, \( \tilde{D}_{\text{TiMn}}^{{ {\text{Al }}}} \) and \( \tilde{D}_{\text{MnTi}}^{{ {\text{Al }}}} \), are mostly negative and smaller in magnitude as compared to respective main coefficients. Based on the main interdiffusion coefficients, aluminum was found to be the slowest interdiffusing species in this system. Strong diffusional interactions were present in two iso-concentration couples, which were manifested in the form of uphill diffusion regions. Tracer diffusion coefficients were evaluated by the generalized Hall’s method, and binary interdiffusion coefficients (\( \tilde{D} \)) were estimated by the method of interpolation in three terminal binary alloys. Binary \( \tilde{D} \) were found to be consistent with the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Leyens and M. Peters, Titanium and titanium alloys: Fundamentals and applications, Wiley, Hoboken, 2003, pp. 430-431.

    Book  Google Scholar 

  2. 2. C. Veiga, J. Davim, and A. Loureiro: Rev. Adv. Mater. Sci, 2012, vol. 32, pp. 133-148.

    CAS  Google Scholar 

  3. 3. R. Boyer: JOM, 2010, vol. 62, pp. 21-24.

    Article  CAS  Google Scholar 

  4. 4. A.K. Sachdev, K. Kulkarni, Z.Z. Fang, R. Yang, and V. Girshov: JOM, 2012, vol. 64, pp. 553-565.

    Article  CAS  Google Scholar 

  5. 5. N. Chopra: JOM, 2015, vol. 67, pp. 118-119.

    Article  Google Scholar 

  6. B. Cowles, D. Backman, and R. Dutton: Proc. Mater. Sci. Technol., ASM International, Houston, Texas, USA, 2011, pp. 44–60.

  7. M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee: Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2014, 8, 726–731.

    Google Scholar 

  8. 8. B. Yogesha and S. Bhattacharya: Int. J. Sci. Eng. Res, 2011, vol. 2, pp. 1-4.

    Google Scholar 

  9. 9. L. Onsager: Ann. N. Y. Acad. Sci., 1945, vol. 46, pp. 241-265.

    Article  CAS  Google Scholar 

  10. 10. L. Trimble, D. Finn, and A. Cosgarea Jr: Acta Metall, 1965, vol. 13, pp. 501-507.

    Article  CAS  Google Scholar 

  11. 11. J.B. Brady: Am. J. Sci, 1975, vol. 275, pp. 954-983.

    Article  CAS  Google Scholar 

  12. 12. J. Kirkaldy, J. Lane, and G. Mason: Can. J. Phys., 1963, vol. 41, pp. 2174-2186.

    Article  CAS  Google Scholar 

  13. 13. D. Whittle and A. Green: Scr. Metall., 1974, vol. 8, pp. 883-884.

    Article  CAS  Google Scholar 

  14. 14. C. Wagner: Acta Metall., 1969, vol. 17, pp. 99-107.

    Article  CAS  Google Scholar 

  15. 15. F. Den Broeder: Scr. Metall., 1969, vol. 3, pp. 321-325.

    Article  Google Scholar 

  16. 16. F. Sauer and V. Freise: Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 1962, vol. 66, pp. 353-362.

    CAS  Google Scholar 

  17. 17. M. Dayananda: Metall. Trans. A, 1983, vol. 14, pp. 1851-1858.

    Article  CAS  Google Scholar 

  18. M. Dayananda and L. Ram-Mohan MultiDiFlux, (Purdue University, 2006), https://engineering.purdue.edu/MSE/research/MultiDiFlux/index.html. Accessed April 2004.

  19. 19. K.M. Day, M.A. Dayananda, and L. Ram-Mohan: J. Phase Equilib. Diffus., 2005, vol. 26, pp. 579-590.

    Article  CAS  Google Scholar 

  20. 20. Y. Nakamura, H. Nakajima, S. Ishioka, and M. Koiwa: Acta Metall., 1988, vol. 36, pp. 2787-2795.

    Article  CAS  Google Scholar 

  21. 21. S. Santra and A. Paul: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3887-3899.

    Article  Google Scholar 

  22. 22. M. Thompson and J. Morral: Acta Metall., 1986, vol. 34, pp. 339-346.

    Article  CAS  Google Scholar 

  23. 23. P. Gupta and A. Cooper Jr: Physica, 1971, vol. 54, pp. 39-59.

    Article  Google Scholar 

  24. 24. C. Kim and M. Dayananda: Metall. Trans. A, 1983, vol. 14, pp. 857-864.

    Article  Google Scholar 

  25. 25. J. Kirkaldy, L. Zia-Ul-Haq, and L. Brown: Trans. ASM, 1963, vol. 56, pp. 843-863.

    Google Scholar 

  26. 26. A. Tripathi, S. Middleton, E.J. Lavernia, A.K. Sachdev, and K.N. Kulkarni: J. Phase Equilib. Diffus., 2018, vol. 39, pp. 841-852.

    Article  CAS  Google Scholar 

  27. Y. Hayashiuchi, T. Hagihara, and T. Okada: Physica B, 1982, vol. 115, pp. 67-71.

    Article  CAS  Google Scholar 

  28. 28. X. Yu, Z. Zhan, J. Rong, Z. Liu, L. Li, and J. Liu: Chem. Phys. Lett., 2014, vol. 600, pp. 43-45.

    Article  CAS  Google Scholar 

  29. 29. T. Takahashi and Y. Minamino: J. Alloy Compd., 2012, vol. 545, pp. 168-175.

    Article  CAS  Google Scholar 

  30. 30. T. Takahashi, Y. Minamino, and M. Komatsu: Keikinzoku/Journal of Japan Institute of Light Metals, 2010, vol. 60, pp. 444-450.

    Article  CAS  Google Scholar 

  31. 31. F. Fan, Y. Gu, G. Xu, H. Chang, and Y. Cui: J. Phase Equilib. Diffus., 2019, vol. 40, pp. 686-696.

    Article  CAS  Google Scholar 

  32. 36. W. Li, B. Tang, Y.-W. Cui, R. Hu, H. Chang, J. Li, and L. Zhou: Calphad, 2011, vol. 35, pp. 384-390.

    Article  CAS  Google Scholar 

  33. 37. T. Takahashi, Y. Minamino, and M. Komatsu: Mater. Trans., 2008, vol. 49, pp. 125-132.

    Article  CAS  Google Scholar 

  34. 32. X. Huang, J. Tan, Y. Guo, G. Xu, and Y. Cui: J. Phase Equilib. Diffus., 2018, vol. 39, pp. 702-713.

    Article  CAS  Google Scholar 

  35. 33. S.-Y. Lee, O. Taguchi, and Y. Iijima: Mater. Trans., 2010, vol. 51, pp. 1809-1813.

    Article  CAS  Google Scholar 

  36. 34. L.D. Hall: J. Chem. Phys., 1953, vol. 21, pp. 87-89.

    Article  CAS  Google Scholar 

  37. 35. F. Shuck and H. Toor: J. Phys. Chem., 1963, vol. 67, pp. 540-545.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Science and Engineering Research Board of the Department of Science and Technology, Government of India, through Grant Number SB/S3/ME/077/2013. The authors would like to acknowledge Mr. Siva Kumar (ACMS, IIT Kanpur) for providing his valuable assistance in EPMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubh N. Kulkarni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 5, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A., Kulkarni, A. & Kulkarni, K.N. Interdiffusion in β (BCC) Phase of the Ti-Al-Mn System at 1100 °C. Metall Mater Trans A 51, 1789–1798 (2020). https://doi.org/10.1007/s11661-020-05629-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05629-z

Navigation