Skip to main content
Log in

Ternary Interdiffusion in β (BCC) Phase of the Ti-Al-Nb System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Interdiffusion coefficients are reported at various compositions in the β (BCC) phase of the Ti-Al-Nb system using solid–solid diffusion couples assembled at three different temperatures of 1060 °C, 1100 °C and 1170 °C. The interdiffusion fluxes were determined after fitting the experimental concentration profiles with MultiDiFlux software and the ternary interdiffusion coefficients were evaluated at various compositions using Kirkaldy’s approach. The interdiffusion of Nb was the slowest, while Ti and Al showed similar interdiffusion kinetics. The main interdiffusion coefficients for the three components are positive. The cross interdiffusion coefficients of Ti and Nb are comparable in magnitude to their respective main terms indicating the presence of strong diffusional interactions in this system. The cross coefficient \(\tilde{D}_{\text{TiNb}}^{\text{Al}}\) is positive indicating that the interdiffusion flux of Ti is enhanced down the concentration gradient of Nb. The negative value of the cross-term \(\tilde{D}_{\text{TiAl}}^{\text{Nb}}\) indicates that the interdiffusion flux of Ti is enhanced up the gradient of Al. The tracer diffusion coefficient of Al increases with temperature and decreasing Nb content in binary Ti-Nb alloys. Binary interdiffusivities calculated at Ti-Nb compositions by extrapolation are reasonably consistent with the values reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Veiga, J. Davim, and A. Loureiro, Properties and Applications of Titanium Alloys: A Brief Review, Rev. Adv. Mater. Sci, 2012, 32(2), p 133-148

    Google Scholar 

  2. R. Boyer, Attributes, Characteristics, and Applications of Titanium and Its Alloys, JOM, 2010, 62(5), p 21-24

    Article  Google Scholar 

  3. D.A. Gerard, Materials and Processes in Z06 Corvette, Adv. Mater. Process., 2008, 166(1), p 30-33

    Google Scholar 

  4. A.K. Sachdev et al., Titanium for Automotive Applications: Challenges and Opportunities in Materials and Processing, JOM, 2012, 64(5), p 553-565

    Article  Google Scholar 

  5. C.G. McCracken, C. Motchenbacher, and D.P. Barbis, Review of Titanium-Powder-Production Methods, Int. J. Powder Metall., 2010, 46(5), p 19-26

    Google Scholar 

  6. Y. Sun et al., Synthesis of γ-TiAl by Reactive Spark Plasma Sintering of Cryomilled Ti and Al Powder Blend, Part I: Influence of Processing and Microstructural Evolution, Metall. Mater. Trans. A, 2014, 45(6), p 2750-2758

    Article  ADS  Google Scholar 

  7. Y. Sun et al., Synthesis of γ-TiAl by Reactive Spark Plasma Sintering of Cryomilled Ti and Al Powder Blend: Part II: Effects of Electric Field and Microstructure on Sintering Kinetics, Metall. Mater. Trans. A, 2014, 45(6), p 2759-2767

    Article  ADS  Google Scholar 

  8. B. Cowles et al., The development and implementation of integrated computational materials engineering (ICME) for Aerospace applications, in Models, Databases and Simulation Tools Needed for Realization of Integrated Computational Materials Engineering (ICME 2010) (2014), p 44

  9. N. Chopra, Integrated Computational Materials Engineering: A Multi-scale Approach, JOM, 2015, 67(1), p 118-119

    Article  ADS  Google Scholar 

  10. B.-C. Zhou et al., Diffusion Coefficients of Alloying Elements in Dilute Mg Alloys: A Comprehensive First-Principles Study, Acta Mater., 2016, 103, p 573-586

    Article  Google Scholar 

  11. T. Grobstein and J. Doychak, Oxidation of High-Temperature Intermetallics, The Metallurgical Society Inc., Warrendale, 1988

    Google Scholar 

  12. T. Wallace et al., Oxidation Characteristics of Ti-25Al-10Nb-3V-1Mo, Oxid. Metals, 1992, 37(3–4), p 111-124

    Article  Google Scholar 

  13. E. Eisenbarth et al., Biocompatibility of β-Stabilizing Elements of Titanium Alloys, Biomaterials, 2004, 25(26), p 5705-5713

    Article  Google Scholar 

  14. S. Prasad and A. Paul, Interdiffusion in Nb-Mo, Nb-Ti and Nb-Zr systems, in Defect and Diffusion Forum (Trans Tech Publ, 2012)

  15. L. Zhu et al., Measurement of Interdiffusion and Impurity Diffusion Coefficients in the BCC Phase of the Ti-X (X = Cr, Hf, Mo, Nb, V, Zr) Binary Systems Using Diffusion Multiples, J. Mater. Sci., 2017, 52(6), p 3255-3268

    Article  ADS  Google Scholar 

  16. V. Verma and K. Kaustubh, Investigations of interdiffusion in titanium-niobium alloys, in MS&T (Symposium on Phase Stability and Diffusion) (Columbus, 2015

  17. J. Ruiz-Aparicio and F. Ebrahimi, Diffusivity in the Nb-Al Binary Solid Solution, J. Alloys Compd., 1993, 202(1–2), p 117-123

    Article  Google Scholar 

  18. U. Gerold and C. Herzig. Titanium self-diffusion and chemical difffusion in BCC Ti-Al Alloys, in Defect and Diffusion Forum (Trans Tech Publ, 1997)

  19. K. Ouchi, Y. Iijima, and K. Hirano, Interdiffusion in Ti-Al System, Titanium, 1980, 80, p 559-568

    Google Scholar 

  20. S.-Y. Lee, O. Taguchi, and Y. Iijima, Diffusion of Aluminum in β-Titanium, Mater. Trans., 2010, 51(10), p 1809-1813

    Article  Google Scholar 

  21. H. Araki et al., Anomalous Diffusion of Aluminum in β-Titanium, Metall. Mater. Trans. A, 1994, 25(4), p 874-876

    Article  Google Scholar 

  22. F. Ebrahimi and J. Ruiz-Aparicio, Diffusivity in the Nb·Ti·Al Ternary Solid Solution, J. Alloys Compd., 1996, 245(1), p 1-9

    Article  Google Scholar 

  23. J.C. Haley, Diffusion and Electromigration in the Ti-Nb-Al Ternary BCC Beta Phase Evaluated Via High-Throughput Combinatorial Optimization Techniques, University of California, Davis, 2016

    Google Scholar 

  24. C. Kim and M. Dayananda, Zero-Flux Planes and Flux Reversals in the Cu-Ni-Zn System at 775 °C, Metall. Mater. Trans. A, 1984, 15(4), p 649-659

    Article  ADS  Google Scholar 

  25. C. Kim and M. Dayananda, Identification of Zero-Flux Planes and Flux Reversals in Several Studies of Ternary Diffusion, Metall. Mater. Trans. A, 1983, 14(4), p 857-864

    Article  ADS  Google Scholar 

  26. V. Witusiewicz et al., The Al-B-Nb-Ti System: IV. Experimental Study and Thermodynamic Re-evaluation of the Binary Al-Nb and Ternary Al-Nb-Ti Systems, J. Alloys Compd., 2009, 472(1), p 133-161

    Article  Google Scholar 

  27. J.-O. Andersson et al., Thermo-Calc & DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26(2), p 273-312

    Article  Google Scholar 

  28. L. Onsager, Theories and Problems of Liquid Diffusion, Ann. N. Y. Acad. Sci., 1945, 46(1), p 241-265

    Article  ADS  Google Scholar 

  29. L. Trimble, D. Finn, and A. Cosgarea, Jr., A Mathematical Analysis of Diffusion Coefficients in Binary Systems, Acta Metall., 1965, 13(5), p 501-507

    Article  Google Scholar 

  30. J.B. Brady, Reference Frames and Diffusion Coefficients, Am. J. Sci., 1975, 275, p 954-983

    Article  ADS  Google Scholar 

  31. J. Kirkaldy, J. Lane, and G. Mason, Diffusion in Multicomponent Metallic Systems: VII. Solutions of the Multicomponent Diffusion Equations with Variable Coefficients, Can. J. Phys., 1963, 41(12), p 2174-2186

    Article  ADS  Google Scholar 

  32. M.A. Dayananda and L.R. Ram-Mohan, MultiDiFlux, Purdue University, 2006. https://engineering.purdue.edu/MSE/research/MultiDiFlux/index.html

  33. L.R. Ram-Mohan, Finite Element and Boundary Element Applications in Quantum Mechanics, Vol 5, Oxford University Press, Oxford, 2002

    MATH  Google Scholar 

  34. K. Kulkarni et al., A Transfer Matrix Analysis of Quaternary Diffusion, Philos. Mag., 2007, 87(6), p 853-872

    Article  ADS  Google Scholar 

  35. D. Whittle and A. Green, The Measurement of Diffusion Coefficients in Ternary Systems, Scr. Metall., 1974, 8(7), p 883-884

    Article  Google Scholar 

  36. K.N. Kulkarni and A.A. Luo, Interdiffusion and Phase Growth Kinetics in Magnesium-Aluminum Binary System, J. Phase Equilibria Diffus., 2013, 34(2), p 104-115

    Article  Google Scholar 

  37. Y. Chen et al., Interdiffusion in FCC Co-Al-Ti Ternary Alloys, J. Phase Equilibria Diffus., 2015, 36(2), p 127-135

    Article  Google Scholar 

  38. B. Gao et al., Diffusion Research in BCC Ti-Al-Ni Ternary Alloys, J. Phase Equilibria Diffus., 2017, 38(4), p 502-508

    Article  Google Scholar 

  39. S. Santra and A. Paul, Role of the Molar Volume on Estimated Diffusion Coefficients, Metall. Mater. Trans. A, 2015, 46(9), p 3887-3899

    Article  Google Scholar 

  40. J. Kirkaldy, D. Weichert, and Z.-U. Haq, Diffusion in Multicomponent Metallic Systems: VI. Some Thermodynamic Properties of the D Matrix and the Corresponding Solutions of the Diffusion Equations, Can. J. Phys., 1963, 41(12), p 2166-2173

    Article  ADS  Google Scholar 

  41. J.G. Duh and M.A. Dayananda, Interdiffusion in Fe-Ni-Cr alloys at 100 °C, in Defect and Diffusion Forum (Trans Tech Publ, 1985)

  42. M. Thompson and J. Morral, The Effect of Composition on Interdiffusion in Ternary Alloys, Acta Metall., 1986, 34(2), p 339-346

    Article  Google Scholar 

  43. F. Shuck and H. Toor, Diffusion in the Three Component Liquid System Methyl Alcohol-n-Propyl Alcohol-Isobutyl Alcohol, J. Phys. Chem., 1963, 67(3), p 540-545

    Article  Google Scholar 

Download references

Acknowledgments

The funding for this work was provided partly by internal grants of IIT Kanpur and partly by National Science Foundation through GOALI project no. CMMI-1601087. Mr. Siva Kumar from Advanced Center for Materials Science, IIT Kanpur is thanked for facilitating the use of EPMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubh N. Kulkarni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A., Middleton, S., Lavernia, E.J. et al. Ternary Interdiffusion in β (BCC) Phase of the Ti-Al-Nb System. J. Phase Equilib. Diffus. 39, 841–852 (2018). https://doi.org/10.1007/s11669-018-0680-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0680-x

Keywords

Navigation