Skip to main content
Log in

Titanium for Automotive Applications: Challenges and Opportunities in Materials and Processing

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Titanium offers performance as well as mass saving benefits in automotive components subjected to reciprocating and suspension loads and in components subjected to extreme temperatures and gradients. However, the extensive use of titanium is hampered by the high cost of the raw material and the special handling that is needed. This article outlines the technological and economic challenges faced and highlights some example materials and process developments that attempt to address these hurdles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Verbrugge, T. Lee, P. Krajewski, A. Sachdev, C. Bjelkengren, R. Roth, and R. Kirchain, Mater. Sci. Forum 618–619, 411 (2009).

    Article  Google Scholar 

  2. E. Alonso, T. Lee, C. Bjelkengren, R. Roth, and R. Kirchain, Environ. Sci. Technol. 46, 2893 (2012).

    Article  Google Scholar 

  3. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (Weinheim, Germany: Wiley-VCH, 2003).

    Book  Google Scholar 

  4. F.H. Froes and K. Faller, JOM 53, 27 (2001).

    Article  Google Scholar 

  5. K. Faller (Paper presented at SAE 2002 World Congress, Paper 2002-01-0363, Detroit, MI, 4–7 March 2002).

  6. O. Schauerte, Titanium and Titanium Alloys (Weinheim, Germany: Wiley-VCH, 2002), p. 477.

    Google Scholar 

  7. H. Friedrich, J. Kiese, H.G. Haldenwanger, and A. Stich, Proceedings of the 10th World Conference on Titanium, ed. G. Lütjering and J. Albrecht (Weinheim, Germany: Wiley-VCH, 2004), p. 3393.

  8. D.A. Gerard, Adv. Mater. Process. 166, 30 (2008).

    Google Scholar 

  9. T. Tetsui, Mater. Sci. Eng. A 329–331A, 582 (2002).

    Google Scholar 

  10. The Titanium Information Group, Titanium Alloys for Automotive Applications (Rotherham, U.K.: The Titanium Information Group, 2006). http://www.titaniuminfogroup.co.uk/documents/technical/34.pdf. Accessed April 2012.

  11. http://www.metalprices.com/. Accessed April 2012.

  12. F.H. Froes, H. Friedrich, J. Kiese, and D. Bergoint, JOM 56, 40 (2004).

    Article  Google Scholar 

  13. G. Crowley, Adv. Mater. Process. 161, 25 (2003).

    Google Scholar 

  14. E.O. Ezugwu and Z.M. Wang, J. Mater. Process. Technol. 68, 262 (1997).

    Article  Google Scholar 

  15. M.C. Shaw, Metal Cutting Principles, Oxford Series on Advanced Manufacturing (Oxford, UK: Oxford University Press, 2005).

    Google Scholar 

  16. R. Komanduri, Appl. Mech. Rev. 46, 80 (1993).

    Article  Google Scholar 

  17. S.L. Semiatin and S.B. Rao, Mater. Sci. Eng. 61, 185 (1983).

    Article  Google Scholar 

  18. P.G. Allen, P.J. Bania, A.J. Hutt, and Y. Combres, Titanium’95 Science and Technology, ed. P.A. Blenkinsop, W.J. Evans, and H.M. Flower (Warrendale, PA: TMS, 1995), pp. 1680–1687.

    Google Scholar 

  19. F. Froes, M. Gungor, and M.A. Imam, Innovations in Titanium, ed. M.N. Gungor, M.A. Imam, and F.H. (Sam) Froes (Warrendale, PA: TMS, 2007), pp. 1–11.

    Google Scholar 

  20. M.A. Imam and F.H. (Sam) Froes, eds., Cost-Affordable Titanium III (Warrendale, PA: TMS, 2010).

    Google Scholar 

  21. F.H. (Sam) Froes, M.A. Imam, and D. Fray, eds., Cost Affordable Titanium (Warrendale, PA: TMS, 2004).

    Google Scholar 

  22. T.E. Norgate and G. Wellwood, JOM 58, 58 (2006).

    Article  Google Scholar 

  23. E.H.K. Technologies, Summary of Emerging Titanium Cost Reduction Technologies (Oak Ridge, TN: Oak Ridge National Laboratory, 2003).

    Google Scholar 

  24. R. Kirchain and R. Roth, The Role of Titanium; Understanding the Economic Implication of Three Emerging Technologies in the Automobile (Cambridge, MA: Camanoe Associates, 2002).

    Google Scholar 

  25. H. Fuji, K. Takahashi, and Y. Yamashita, Nippon Steel Tech. Report 88, 70 (2003).

  26. F. Appel, J.D.H. Paul, and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology (Weinheim, Germany: Wiley-VCH, 2011).

    Book  Google Scholar 

  27. T. Noda, Intermetallics 6, 709 (1998).

    Article  Google Scholar 

  28. Y. Nishiyama, T. Miyashita, S. Isobe, and T. Noda, High Temperature Aluminides and Intermetallics, ed. S.H. Wang, C.T. Liu, D.P. Pope, and J.O. Stiegler (Warrendale, PA: TMS, 1990), pp. 557–584.

    Google Scholar 

  29. C.G. McCracken, C. Motchenbacher, and D.P. Barbis, Int. J. Powder Metall. 46, 19 (2010).

    Google Scholar 

  30. R. Boyer, G. Welsch, and E.W. Collings, Materials Properties Handbook: Titanium Alloys (Materials Park, OH: ASM International, 1994).

    Google Scholar 

  31. Y.-W. Kim, JOM 46, 30 (1994).

    Article  Google Scholar 

  32. Y.Y. Cui and R. Yang, Institute of Metal Research, Chinese Academy of Sciences, unpublished work, 2002.

  33. M. Yamaguchi, H. Inui, and K. Ito, Acta Mater. 48, 307 (2000).

    Article  Google Scholar 

  34. D.M. Dimiduk, Mater. Sci. Eng. A 263A, 281 (1999).

    Google Scholar 

  35. H. Bauer and D.B. Wortberg, Ti-2003 Science and Technology, Proceedings of the 10th World Conference on Titanium, ed. G. Lütjering and J. Albrecht (Weinheim, Germany: Wiley-VCH, 2004), p. 3411.

  36. Z.C. Liu, J.P. Lin, S.J. Li, and G.L. Chen, Intermetallics 10, 653 (2002).

    Article  Google Scholar 

  37. Y.-J. Li, Q.-M. Hu, D.-S. Xu, and R. Yang, Intermetallics 19, 793 (2011).

    Article  Google Scholar 

  38. X. Wu, Intermetallics 14, 1114 (2006).

    Article  Google Scholar 

  39. K. Maki, A. Ehira, M. Sayashi, T. Sasaki, T. Noda, M. Okabe, and S. Isobe, SAE Technical Paper 960303 (Warrendale, PA: SAE International, 1996), pp. 117–125.

  40. LIVALVES, Light-weight valves for high-efficiency engines, 2000–2004. http://ec.europa.eu/research/transport/projects/items/_livalves____european_and_chinese_collaboration_leads_to_possible_breakthrough_en.htm#content. Accessed February 2012.

  41. K. Liu and W. Ke, Private communication, Institute of Metal Research, Chinese Academy of Sciences (2006).

  42. K. Gebauer, Intermetallics 14, 355 (2006).

    Article  Google Scholar 

  43. K. Weinert, S. Bergmann, and C. Kempmann, Prod. Eng. Res. Dev. 13, 61 (2006).

    Google Scholar 

  44. W. Ward, Race Engine Technol. 58, 34 (2011).

    Google Scholar 

  45. F.H. Froes and J.E. Smugeresky, eds., Powder Metallurgy of Titanium Alloys (Warrendale, PA: TMS-AIME, 1980).

    Google Scholar 

  46. G.A. Weimer, Iron Age 221, 70 (1978).

    Google Scholar 

  47. T. Saito, JOM 56, 33 (2004).

    Article  Google Scholar 

  48. M. Qian, Int. J. Powder Metall. 46, 29 (2010).

    Google Scholar 

  49. F.H. Froes and D. Eylon, Int. Mater. Rev. 35, 162 (1990).

    Article  Google Scholar 

  50. C.A. Kelto, B.A. Kosmal, and D. Eylon, J. Metals 32, 17 (1980).

    Google Scholar 

  51. J.J. Conway and F.J. Rizzo, ASM Handbook, Vol. 7: Powder Metal Technologies and Applications (Materials Park, OH: ASM International, 1998), pp. 605–620.

    Google Scholar 

  52. D. Eylon, F.H. Froes, and S. Abkowitz, ASM Handbook Vol. 7: Powder Metal Technologies and Applications (Materials Park, OH: ASM International, 1998), pp. 874–886.

    Google Scholar 

  53. P.J. Andersen and P.C. Eloff, Powder Metallurgy of Titanium Alloys, ed. F.H. Froes and J.E. Smugeresky (Warrendale, PA: TMS-AIME, 1980), pp. 175–187.

    Google Scholar 

  54. R.R. Boyer, J.E. Magnuson, and J.W. Tripp, Powder Metallurgy of Titanium Alloys, ed. F.H. Froes and J.E. Smugeresky (Warrendale, PA: TMS-AIME, 1980), pp. 203–216.

    Google Scholar 

  55. V.A. Duz, V.S. Moxson, F.H. Froes, F. Sun, and J.S. Montgomery, Cost-Affordable Titanium, ed. F.H. Froes, M.A. Imam, and D. Fray (Warrendale, PA: TMS, 2004), pp. 145–150.

    Google Scholar 

  56. O.M. Ivasishin, D.G. Savvakin, F.H. Froes, and K.A. Bondarchuk, Powder Metall. Met. Ceram. 41, 382 (2002).

    Article  Google Scholar 

  57. M. Hagiwara, ISIJ Int. 31, 922 (1991).

    Article  Google Scholar 

  58. S. Fusheng and O.Y. Kuang, Innovations in Titanium Technology (Warrendale, PA: TMS, 2007), p. 19.

    Google Scholar 

  59. H. Wang, Z. Fang, and P. Sun, Int. J. Powder Metall. 46, 45 (2010).

    Google Scholar 

  60. I. Weiss, D. Eylon, M.W. Toaz, and F.H. Froez, Metall. Mater. Trans. A 17, 549 (1986).

    Article  Google Scholar 

  61. G. Lutjering and J.C. Williams, Titanium, 2nd ed. (New York: Springer, 2007).

    Google Scholar 

  62. D. Eylon, R.G. Vogt, and F.H. Froes, Progress in Powder Metallurgy, ed. E.A. Carlson and G. Gaines (Princeton, NJ: Metal Powder Industries Federation, 1986), pp. 625–634.

    Google Scholar 

  63. G.X. Wang and M. Dahms, Metall. Trans. A 24A, 1517 (1993).

    Google Scholar 

  64. K.P. Rao, Y.V.R.K. Prasad, and K. Suresh, Mater. Des. 32, 4874 (2011).

    Article  Google Scholar 

  65. T.K. Lee, E.I. Mosunov, and S.K. Hwang, Mater. Sci. Eng. A 239–240A, 540 (1997).

    Google Scholar 

  66. Y. Mishin and C. Herzig, Acta Mater. 48, 589 (2000).

    Article  Google Scholar 

  67. J. Tardy and K.N. Tu, Phys. Rev. B 32, 2070 (1985).

    Article  Google Scholar 

  68. T. Fujita, A. Agawa, C. Ouchi, and H. Tajima, Mater. Sci. Eng. A 213A, 148 (1996).

    Google Scholar 

  69. T. Saito, U.S. Patent, no. 6117204, 12 September 2000.

  70. H.P. Tang, Y. Liu, W.F. Wei, and L.F. Chen, Chin. J. Nonferrous Met. 14, 244 (2004).

    Google Scholar 

  71. W. Wei, Y. Liu, K. Zhou, and B. Huang, Powder Metall. 46, 246 (2003).

    Article  Google Scholar 

  72. Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu, and B.Y. Huang, Mater. Sci. Eng. A 418A, 25 (2006).

    Google Scholar 

  73. J.E. Garay, Ann. Rev. Mater. Res. 40, 445 (2010).

    Article  Google Scholar 

  74. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  Google Scholar 

  75. Y.Y. Chen, H.B. Yu, D.L. Zhang, and L.H. Chai, Mater. Sci. Eng. A A525, 166 (2009).

    Google Scholar 

  76. R. Orru`, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Mater. Sci. Eng. R 63, 127 (2009).

    Article  Google Scholar 

  77. M. Thieme, K.-P. Wieters, F. Bergner, D. Scharnweber, H. Worch, J. Ndop, T. J. Kim, and W. Grill, J. Mater. Sci. Mater. Med. 12, 225 (2001).

    Article  Google Scholar 

  78. R.K. Gupta, B. Pant, V. Agarwala, R.C. Agarwala, and P.P. Sinha, J. Mater. Sci. Technol. 26, 693 (2010).

    Article  Google Scholar 

  79. R.J. Low, I.M. Robertson, and G.B. Schaffer, Scr. Mater. 56, 895 (2007).

    Article  Google Scholar 

  80. K.P. Rao and Y.J. Du, Mater. Sci. Eng. A 277A, 46 (2000).

    Google Scholar 

  81. A. Bohm and B. Kieback, Z. Metalkd. 89, 90 (1998).

    Google Scholar 

  82. Y. Liu, L. Chen, W. Wei, H. Tang, B. Liu, and B. Huang, J. Mater. Sci. Technol. 22, 465 (2006).

    Google Scholar 

  83. V.A. Duz, O. Ivasishin, C. Lavender, V.S. Moxson, and V.V. Telin (Paper presented at Titanium 2008 24th Annual ITA Conference & Exhibition, Las Vegas, NV, 21–24 September 2008).

  84. O.M. Ivasishin, Mater. Forum 29, 1 (2005).

    Google Scholar 

  85. O.M. Ivasishin, D.G. Savvakin, V.S. Moxson, K.A. Bondareval, and F.H.S. Froes, Mater. Technol. 17, 20 (2002).

    Google Scholar 

  86. O.M. Ivasishin, D. Eylon, V.I. Bondarchuk, and D.G. Savvakin, Defects Diffus. Forum 277, 177 (2008).

    Article  Google Scholar 

  87. I.M. Robertson and G.B. Schaffer, Powder Metall. 53, 12 (2010).

    Article  Google Scholar 

  88. Z.Z. Fang, P. Sun, and H. Wang, Adv. Eng. Mater. (in press, 2012).

  89. X.L. Han, Q. Wang, D.L. Sun, and H.X. Zhang, Chin. J. Nonferrous Met. 18, 523 (2008).

    Article  Google Scholar 

  90. X.L. Han, Q. Wang, D.L. Sun, and H.X. Zhang, Scr. Mater. 56, 77 (2007).

    Article  Google Scholar 

  91. J.W. Zhao, H. Ding, W.J. Zhao, X.F. Tian, H.L. Hou, and Y.Q. Wang, Trans. Nonferrous Met. Soc. China 18, 506 (2008).

    Article  Google Scholar 

  92. S.Q. Zhang, J. Mater. Eng. 2, 24 (1992).

    Google Scholar 

  93. F.H. Froes, O.N. Senkov, and J.I. Qazi, Int. Mater. Rev. 49, 227 (2004).

    Article  Google Scholar 

  94. T.W. Reddoch, ASM Handbook: Vol. 7 (Materials Park, OH: ASM International, 1990), pp. 638–641.

    Google Scholar 

  95. Z. Fang and P. Sun, Key Eng. Mater. (in press, 2012).

  96. V.L. Girshov, Scientif.-Tech. J. SPbSPU, No. 51 C. 58 (2007)(in Russian).

  97. V.I. Revnivtsev, G.A. Denisov, L.P. Zarogatskiy, and V.Y. Turkin, Vibration Disintegration of Hard Materials (Moscow: Nedra, 1992), p. 430 (in Russian).

  98. A.I. Rudskoy and V.L. Girshov, Metalloobrabotka, #6. C., 28 (2005) (in Russian).

  99. Y.A. Rybin, A.I. Rudskoy, and A.M. Zolotov, Mathematic Modeling and Design of Technological Processes of Metal Treatment by Pressure (Saint-Petersburg: Nauka, 2004), p. 640 (in Russian).

  100. A.I. Rudskoy, Y.I. Rybin, and V.N. Tsemenko, Vestnik Magnitogorskogo GTU. #4. C, 93 (2006) (in Russian).

  101. A.E. Alexandrov and Y.I. Rybin (Paper presented at the 3rd International Science-Technology Conference, Modern Achievements in Theory and Technology of Plastic Treatment of Metals, Sept. 20–22, 2005, Saint-Petersburg, Russia), pp. 111–114 (in Russian).

  102. V.N. Tsemenko, Deformation of the Powder Medium (Saint Petersburg: Publisher of Saint-Petersburg State Polytechnical University, 2001), 104c (in Russian).

  103. A.I. Rudskoy, Y.I. Rybin, V.N. Tsemenko, Scientif.-Tech. J. SPbSPU, #3C, 26 (2007) (in Russian).

  104. A.I. Borovkov and D.V. Shevchenko (Paper presented at the ANSYS Conference and Exhibition 2002, Pittsburgh, PA, 22–24 April 2002), p. 7.

  105. V.L. Girshov, N.N. Pavlov, and A. Treshevskiy, Scientif.-Tech. J. SPbSPU, #2C, 40 (2005).

  106. R.M. German, Int. J. Powder Metall. 46, 11 (2010).

    Google Scholar 

  107. M. Ashraf Imam and F.H. (Sam) Froes, JOM 62(5) (2010).

  108. E.J. Lavernia, B.Q. Han, and J.M. Schoenung, Mater. Sci. Eng. A 493, 207 (2008).

    Article  Google Scholar 

  109. O. Ertorer, T. Topping, Y. Li, W. Moss, and E.J. Lavernia, Scr. Mater. 60, 586 (2009).

    Article  Google Scholar 

  110. M.M. Kuttolamadom, J. Jones, L. Mears, J. Ziegert, and T. Kurfess (Paper presented at SAE 2011 World Congress, Paper 2011-01-0429, Detroit, MI, 12–14 April 2011).

Download references

Acknowledgements

One author (A.K.S.) would like especially to thank several people who provided material to make this article possible: Mike Holly and Peter Sarosi of GM; Randy Kirchain of MIT; Laine Mears of Clemson University; Osman Ertorer of UC Davis; S. Chandrasekar of Purdue; and Pei Sun of University of Utah. Finally, the management of GM Global R&D is thanked for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sachdev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachdev, A.K., Kulkarni, K., Fang, Z.Z. et al. Titanium for Automotive Applications: Challenges and Opportunities in Materials and Processing. JOM 64, 553–565 (2012). https://doi.org/10.1007/s11837-012-0310-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0310-8

Keywords

Navigation