Skip to main content
Log in

Combined Effects of High Undercooling and Large Cooling Rate on the Microstructure Evolution and Hardening Mechanism of Rapidly Solidified Ti-Al Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Controlling the microstructure evolution of Ti-(47, 50, 54) at. pct Al alloys by combining the effects of high undercooling and large cooling rate has been investigated. The calculated undercooling and cooling rates of the three component alloy droplets increase as power functions with the decreasing alloy droplet diameter D. With decreasing D, the microstructure of Ti-47 at. pct Al alloy evolves from dendritic dendrites to equiaxed dendrites, and the main microstructure of Ti-50 at. pct Al alloy transforms from a lamellar microstructure to a non-lamellar microstructure, while that of Ti-54 at. pct Al alloy appears as an interweaving microstructure. The α2 phase with a superlattice structure and the α2n phase with a nonsuperlattice structure are confirmed by transmission electron microscopy, and the large difference of Al contents leads to formation of the α2 phase and the α2n phase. Atomic images show that the interface of the α2n phase and γ phase is coherent. The α2n phase precipitates from the γ phase during cooling. The combined effects of high undercooling and large cooling rate suppress the transformation of the α phase to (α2 + γ) phases. The Young’s modulus first increases and then decreases with decreasing D, while the nanohardness is controlled by the combined factors of the microstructure morphology, phase composition, phase ratio, and grain refinement. As for the microhardness, grain refinement dominates the hardening of the Ti-54 at. pct Al alloys, while the combined factors dominate the hardening of Ti-(47, 50) at. pct Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. 1. J. A. Lemberg and R. O. Ritchie: Adv. Mater. 24 (2012) 3445-3460.

    Article  CAS  Google Scholar 

  2. 2. G. Yang, H.C. Kou, J.R. Yang, J.S. Li, H.Z. Fu: Acta Mater., 2016, vol. 112, pp. 121-131.

    Article  CAS  Google Scholar 

  3. 3. Y. Garip, O. Ozdemir: Meter. Mater. Trans. A., 2018, vol. 49A, pp: 2455-62.

    Article  Google Scholar 

  4. 4. M. Thomas, T. Malot, P. Aubry: Meter. Mater. Trans. A., 2017, vol. 48A, pp: 3143-58.

    Article  Google Scholar 

  5. 5. H. Clemens and S. Mayer: Adv. Eng. Mater., 2013, vol. 15, pp. 191-215.

    Article  CAS  Google Scholar 

  6. 6. G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang: Nature Materials., 2016, vol. 15, pp. 876-881.

    Article  CAS  Google Scholar 

  7. 7. H. Zhu, K. Maruyama and J. Matsuda: Appl. Phys. Lett., 2006, vol 88, pp. 131908-910.

    Article  Google Scholar 

  8. 8. E. Schwaighofer, H. Clemens, J. Lindemann, S. Andreas and M. Svea: Mater. Sci. Eng. A., 2014, vol. 614, pp. 297-310.

    Article  CAS  Google Scholar 

  9. Munoz-Moreno R, Ruiz-Navas EM, Srinivasarao B, Torralba JM (2014) J Mater Sci Technol 30:1145-1154

    Article  CAS  Google Scholar 

  10. 10. T. Zofia, B. Guillaume, F. Gilbert and M. Jean-Philippe: Acta Mater., 2017, vol. 135, pp. 1-13.

    Article  Google Scholar 

  11. 11. J. Guyon, A. Hazotte and E. Bouzy: J. Alloy. Compd., 2015, vol. 656, pp. 667–675.

    Article  Google Scholar 

  12. 12. M. Seifi, A.A. Salem, D.P. Stako, U. Ackelid, S.L. Semiatin and J.J. Lewandowski: J. Alloy. Compond., 2017, vol. 729, pp. 1118-35.

    Article  CAS  Google Scholar 

  13. 13. X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su and G.L. Chen: Acta Mater., 2012, vol. 60, pp. 498-506.

    Article  CAS  Google Scholar 

  14. 14. K. Maruyama, M. Yamaguchi, G. Suzuki, H.L. Zhu, H.Y. Kim and M.H. Yoo: Acta Mater., 2004, vol. 52, pp. 5185-94.

    Article  CAS  Google Scholar 

  15. 15. F.T. Kong, N. Cui and Y.Y. Chen: Meter. Mater. Trans. A., 2018, vol. 49A, pp. 5574-84.

    Article  Google Scholar 

  16. 16. K.K. Ma, H.M. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia and J.M. Schoenung: Acta Mater., 2014, vol. 62, pp. 141-155.

    Article  CAS  Google Scholar 

  17. 17. Q. Wang, R.R. Chen and X. Gong: Meter. Mater. Trans. A., 2018, vol. 49A, pp. 4555-64.

    Article  Google Scholar 

  18. 18. P. Erdely, P. Staron, A. Stark: Acta. Mater., 2019, vol. 164, pp: 110-121.

    Article  CAS  Google Scholar 

  19. 19. X. Shi, S.C. Duan, W.S. Yang, S. Wen: Meter. Mater. Trans. B., 2018, vol, 49B, pp: 1883-97.

    Article  Google Scholar 

  20. 20. H. Jiang, K. Zhang, X.J. Hao, H. Saage, N.Wain, D. Hu, M.H. Loretto and X. Wu, Intermetallics., 2010, vol. 18, pp. 938-944.

    Article  CAS  Google Scholar 

  21. 21. J.R. Yang, X.Y. Wang, B. Cao, Y.L. Wu, K.R. Zhang and R. Hu: Meter. Mater. Trans. A., 2017, vol. 48A, pp. 5095-5105.

    Article  Google Scholar 

  22. 22. P. Lü and H.P. Wang: Scripta. Mater., 2017, vol. 137, pp. 31-35.

    Article  Google Scholar 

  23. 23. D. Hu and R.R. Botten: Intermetallics., 2002, vol. 10, pp. 701-715.

    Article  CAS  Google Scholar 

  24. H.P. Wang, P. Lü, X. Cai, B. Zhai, J.F. Zhao, and B. Wei: Mater. Sci. Eng. A, 2019. https://doi.org/10.1016/j.msea.2019.128660. Accessed 12 November 2019.

  25. 25. R. Bohn, T. Klassen and R. Bormann: Acta Mater., 2001, vol. 49, pp. 299-311.

    Article  CAS  Google Scholar 

  26. 26. W.P. Liu and J.N. Dupont: Meter. Mater. Trans. A., 2004, vol. 35, pp. 1133-40.

    Article  Google Scholar 

  27. 27. R. Lengsdorf, D. Holland-Moritz and D.M. Herlach: Scripta. Mater., 2010, vol. 62, pp. 365-367.

    Article  CAS  Google Scholar 

  28. 28. B.J. Park, H.J. Chang, D.H. Kim and W.T. Kim: Appl. Phys. Lett., 2004, vol. 85, pp. 6353-55.

    Article  CAS  Google Scholar 

  29. 29. N. Yan, Z.Y. Hong, D.L. Geng and B. Wei: Appl. Phys. A., 2015, vol. 120, pp. 207-213.

    Article  CAS  Google Scholar 

  30. 30. Y.H. Wu, J. Chang, W.L. Wang, L. Hu, S.J. Yang and B. Wei: Acta Mater., 2017, vol. 129, pp. 366-377.

    Article  CAS  Google Scholar 

  31. 31. J.C. Schuster and M.Palm: Journal of phase equilibria & diffusion., 2006, vol. 27, pp. 255-277.

    Article  CAS  Google Scholar 

  32. 32. E.S. Lee and S. Ahn: Acta metall. Mater. 42 (1994) 3231-3243.

    Article  CAS  Google Scholar 

  33. 33. M.X. Li, H.P. Wang, N. Yan, B. Wei: Sci. China. Technol. Sc., 2018, vol. 61, pp. 1021-1030.

    Article  CAS  Google Scholar 

  34. 34. P.S. Grant, B. Cantor, L. Katgerman: Acta metall. Mater., 1993, vol. 41, pp. 3097-3107.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are especially grateful to Professor B. Wei for the experimental support. They also thank Dr. P. Lü, Mr. Q. Wang, Mr. J.F. Zhao, and Mr. D.D. Zuo for their help with the experiments or discussion. This work is financially supported by National Natural Science Foundation of China (Nos. 51734008, 51522102, and 51474175) and supported by the National Key R&D Program of China (Grant No. 2018YFB2001800) and the Shaanxi Key Industry Chain Program (Grant No. 2019ZDLGY05-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 14, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z.C., Wang, H.P. Combined Effects of High Undercooling and Large Cooling Rate on the Microstructure Evolution and Hardening Mechanism of Rapidly Solidified Ti-Al Alloys. Metall Mater Trans A 51, 1242–1253 (2020). https://doi.org/10.1007/s11661-019-05616-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05616-z

Navigation