Skip to main content
Log in

Coupling effect of undercooling and cooling on Ti–Al–V alloy solidification

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rapid solidification is one of the most significant studies for titanium alloys. In this paper, we investigated the rapid solidification of Ti–Al–V alloy micro-droplets by a drop tube. The generally ignored coupling effect of undercooling and cooling on the solidification was explored, which associated with inherent solute contents. According to the results of thermal analysis, as well as the calculation of undercooling and cooling rate, a valid model was proposed to discuss the β → α phase transition. It suggested that the microstructures of supersaturated Ti–Al–V alloys hardly preserved primary β phase in the rapid solidification. Moreover, the formation energy calculated from first principle complementally indicated that excess addition of vanadium was against to the stability of β phase. Accordingly, the rapid solidification paths and microstructure evolutions were summarized, which was explained by the calculation results. The final microstructures were all composed of α phase with various grain configurations, including lamellar and dendritic crystals, evolving with the decrease of droplet diameter. The excess solutes changed the way of dendrite growth from the regular dendrite to worm-like dendrite. Note that the competitive nucleation behavior between β phase and α phase was clarified in the rapid solidification. In addition, the mechanical properties of master alloys and solidified droplets were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.L.R. Amirez-Ledesma, E. Lopez-Molina, H.F. Lopez, J.A. Juarez-Islas, Acta Mater. 111, 138–147 (2016)

    Article  Google Scholar 

  2. Y.H. Wu, J. Chang, W.L. Wang, L.H.S.J. Yang, B. Wei, Acta Mater. 129, 366–377 (2017)

    Article  Google Scholar 

  3. Y.F. Si, H.P. Wang, P. Lü, B. Wei, Appl. Phys. A 125, 102 (2019)

    Article  ADS  Google Scholar 

  4. J. Schroers, Adv. Mater. 22, 1566–1597 (2010)

    Article  Google Scholar 

  5. Y.J. Liang, J. Li, A. Li, X.T. Pang, H.M. Wang, Scr. Mater. 127, 58–62 (2017)

    Article  ADS  Google Scholar 

  6. S. Izumi, M. Yamasa, Y. Kawamura, Corros. Sci. 51, 395–402 (2009)

    Article  Google Scholar 

  7. H.P. Wang, C.H. Zheng, P.F. Zou, S.J. Yang, L. Hu, B. Wei, J. Mater. Sci. Technol. 34, 436–439 (2018)

    Article  Google Scholar 

  8. K. Zhou, H.P. Wang, J. Chang, B. Wei, Chem. Phys. Lett. 639, 105–108 (2015)

    Article  ADS  Google Scholar 

  9. J. Li, X. Cheng, D. Liu, S.Q. Zhang, Z. Li, B. He, H.M. Wang, Mater. Lett. 214, 56–59 (2018)

    Article  Google Scholar 

  10. Y. Ruan, Q.Q. Wang, S.Y. Chang, B. Wei, Acta Mater. 141, 456–465 (2017)

    Article  Google Scholar 

  11. Q. Zhang, Y. Zheng, X.L. Su, K. Yin, X.F. Tang, C. Uher, Scr. Mater. 96, 1–4 (2015)

    Article  ADS  Google Scholar 

  12. K. Kuribayashi, S. Ozawa, K. Nagayama, Y. Inatomi, J. Cryst. Growth 468, 73–78 (2016)

    Article  ADS  Google Scholar 

  13. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549, 365–369 (2017)

    Article  ADS  Google Scholar 

  14. P. Lü, H.P. Wang, Metall. Trans. B 49, 499–508 (2018)

    Article  Google Scholar 

  15. W.L. Wang, Z.Q. Li, B. Wei, Acta Mater. 59, 5482–5493 (2011)

    Article  Google Scholar 

  16. Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227–230 (2016)

    Article  ADS  Google Scholar 

  17. N. Liu, P.H. Wu, P.J. Zhou, Z. Peng, X.J. Wang, Y.P. Lu, Intermetallics 72, 44–52 (2016)

    Article  Google Scholar 

  18. P. Jia, X. Li, J. Zhang, K. Zhang, X.Y. Teng, X. Hu, C. Yang, D.G. Zhao, J. Mol. Liq. 263, 218–227 (2018)

    Article  Google Scholar 

  19. J.S. Li, W.J. Jia, J. Wang, H.C. Kou, D. Zhang, E. Beaugnon, Mater. Des. 95, 183–187 (2016)

    Article  ADS  Google Scholar 

  20. N. D’Souza, L.M. Feitosa, G.D. West, N.G. Jones, B. Dong, J. Alloys Compd. 698, 375–383 (2017)

    Article  Google Scholar 

  21. Q. Wang, H.S. Ding, H.L. Zhang, R.R. Chen, J.J. Guo, H.Z. Fu, Mater. Charact. 137, 133–141 (2018)

    Article  Google Scholar 

  22. R. M’Saoubi, D. Axinte, S.L. Soo, C. Nobel, H. Attia, G. Kappmeyer, S. Engin, W.M. Sim, CIRP Ann. 64, 557–580 (2015)

    Article  Google Scholar 

  23. A. Devaraj, V.V. Joshi, A. Srivastava, S. Manandhar. V. Moxson, V.A. Duz, C. Lavender, Nat. Commun., 7 (2016)

  24. Y. Sato, M. Tsukamoto, S. Masuno, Y. Yamashita, K. Yamashita, D. Tanigawa, N. Abe, Appl. Phys. A 122, 439 (2016)

    Article  ADS  Google Scholar 

  25. R. Kumar, O. Prakash, U. Ramamurty, Acta Mater. 154, 246–260 (2018)

    Article  Google Scholar 

  26. P. Lü, H.P. Wang, B. Wei, Metall. Mater. Trans. A 50A, 789–803 (2019)

    Article  ADS  Google Scholar 

  27. W. Liu, J. Chang, H.P. Wang, Steel Res. Int. 89, 1800053 (2018)

    Article  Google Scholar 

  28. G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  29. S. Khatta, S.K. Tripathi, S. Prakash, Appl. Phys. A 123, 582 (2017)

    Article  ADS  Google Scholar 

  30. H. Wang, N. Warnken, R.C. Reed, Mater. Sci. Eng. A. 528, 622–630 (2010)

    Article  Google Scholar 

  31. E.S. Lee, S. Ahn, Acta Metall. Mater. 42, 231–3243 (1994)

    Google Scholar 

  32. C.G. Levi, R. Mehrabian, Metall. Mater. Trans. A 13, 221–234 (1982)

    Article  ADS  Google Scholar 

  33. M.X. Li, H.P. Wang, N. Yan, B. Wei, Sci. China: Technol. Sci. 61, 1021–1030 (2018)

    Article  Google Scholar 

  34. P.S. Grant, B. Cantor, L. Katgerman, Acta Metall. Mater. 41, 3097–3108 (1993)

    Article  Google Scholar 

  35. C.V. Thompson, F. Spaepen, Acta Metall. 31, 2021–2027 (1983)

    Article  Google Scholar 

  36. B. Zhai, K. Zhou, P. Lü, H.P. Wang, Acta Metall. Sin. 54, 824–830 (2018)

    Google Scholar 

  37. K. Zhou, B. Wei, Appl. Phys. A 122, 248 (2016)

    Article  ADS  Google Scholar 

  38. A. Sari, G. Merad, H.S. Abdelkader, Comput. Mater. Sci. 96, 348–353 (2015)

    Article  Google Scholar 

  39. Q. Wang, R.R. Chen, X. Gong, J.J. Guo, Y.Q. Su, H.S. Ding, H.Z. Fu, Metall. Mater. Trans. A 49, 4555–4564 (2018)

    Article  Google Scholar 

  40. L.C. Zhang, H. Attar, Adv. Eng. Mater. 18, 63–475 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51734008, 51522102 and 51871185). We thank the director of LMSS, Prof. B. Wei, for his consistent support. Thank Mr. M.X. Li and Ms. W. Liu for their meaningful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, B., Zhou, K. & Wang, H.P. Coupling effect of undercooling and cooling on Ti–Al–V alloy solidification. Appl. Phys. A 126, 16 (2020). https://doi.org/10.1007/s00339-019-3184-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3184-6

Navigation