Skip to main content
Log in

High-Resolution Residual Stress Mapping of Magnesium AZ80 Friction Stir Welds for Three Processing Conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Low-angle synchrotron transmission diffraction has been used to create high-resolution 2D residual strain maps of friction stir welds made with three processing conditions. These spatial maps of residual strain reveal local concentrations not detectable by line scans, and confirm that the asymmetric material flow known to produce asymmetric temperature and texture distributions also results in asymmetric residual strain distributions. The experimental set-up permitted simultaneous measurement of both texture and strain, which provides strong evidence against the correlation of these features in magnesium friction stir welds. Mapping diffraction peak width across the weld provides insight into the spatial distribution of dislocations and microstrains, and indicates locations of interest for higher resolution research such as TEM. A diffraction method is presented to determine the solute content of a ternary system using the lower symmetry of a non-cubic system, which can be extended to detecting the onset of precipitation among other applications. Comparison of three friction stir-welding conditions shows how the residual strains at the interface can reverse from compressive to tensile with decrease in the heat input, explaining a significant disparity in the literature results. Lower residual stress values were found to be well-correlated with improved transverse tensile behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50, pp. 1–78.

    Article  CAS  Google Scholar 

  2. R. Zettler, A.C. Blanco, J.F. dos Santos, S. Marya. In Magnesium Technology 2005, pages 409–423, editors N.R. Neelameggham, H.I. Kaplan, and B.R. Powell, San Francisco, CA; USA, 2005. TMS.

    Google Scholar 

  3. J. Hiscocks, B.J. Diak, A.P. Gerlich, and M.R. Daymond: Mater. Sci. Technol., 2017, vol. 33, pp. 189–99.

    Article  CAS  Google Scholar 

  4. J. Yang, D.R. Ni, D. Wang, B.L. Xiao, and Z.Y. Ma: Mater. Charact., 2014, vol. 96, pp. 142–50.

    Article  CAS  Google Scholar 

  5. W. Callister. Materials Science and Engineering, An introduction. John Wiley & Sons Inc, 2000.

    Google Scholar 

  6. M.M. Avedesian, Hugh Baker, editors. Magnesium and Magnesium Alloys. ASM International, (1999).

    Google Scholar 

  7. P.J. Withers. Residual Stress: Definition. In The Encyclopedia of Materials: Science and Technology, pages 8110–8113, editor K.H.J. Buschow, Elsevier, (2001).

    Chapter  Google Scholar 

  8. M.E. Fitzpatrick, A. Lodini, editors. Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation. Taylor and Francis, (2003).

    Google Scholar 

  9. W. Woo: Severe Plastic Deformation Using Friction Stir Processing, and the Characterization of Microstructure and Mechanical Behavior Using Neutron Diffraction. Ph.D. Thesis, University of Tennessee, 2006.

  10. K. Masubuchi. Residual Stresses and Distortion in Welds. In The Encyclopedia of Materials: Science and Technology, pages 8121–8126, editor K.H.J. Buschow, Elsevier, (2001).

    Google Scholar 

  11. W. Woo, H. Choo, D.W. Brown, M.A.M. Bourke, Z. Feng, S.A. David, C.R. Hubbard, and P.K. Liaw. Appl. Phys. Lett., 2005, 86:231902.

    Article  CAS  Google Scholar 

  12. M. Riahi and H. Nazari: Int. J. Adv. Manuf. Technol., 2011, vol. 55, pp. 143–52.

    Article  Google Scholar 

  13. H. Lombard, D.G. Hattingh, A. Steuwer, and M.N. James: Mater. Sci. Eng. A, 2009, vol. 501, pp. 119–24.

    Article  CAS  Google Scholar 

  14. W. Woo, H. Choo, M.B. Prime, Z. Feng, and B. Clausen: Acta Mater., 2008, vol. 56, pp. 1701–11.

    Article  CAS  Google Scholar 

  15. H. Jamshidi Aval, S. Serajzadeh, N. A. Sakharova, A. H. Kokabi, and A. Loureiro. J. Mater. Sci., 2012, 47:5428–5437.

    Article  CAS  Google Scholar 

  16. P. Staron, M. Koak, and S. Williams: Appl. Phys. A, 2002, vol. 74, pp. S1161–62.

    Article  CAS  Google Scholar 

  17. A. Steuwer, M.J. Peel, and P.J. Withers: Mater. Sci. Eng. A, 2006, vol. 441, pp. 187–96.

    Article  CAS  Google Scholar 

  18. M.T. Hutchings, P.J. Withers, T.M. Holden, and T. Lorentzen: Introduction to the Characterization of Residual Stress by Neutron Diffraction, CRC Press, Boca Raton, FL, 2005.

    Book  Google Scholar 

  19. W. Woo and H. Choo: Sci. Technol. Weld. Join., 2011, vol. 16, pp. 267–72.

    Article  CAS  Google Scholar 

  20. W. Woo, Z. Feng, X.-L. Wang, D.W. Brown, B. Clausen, K. An, H. Choo, C.R. Hubbard, and S.A. David: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 298–303.

    Article  CAS  Google Scholar 

  21. S. Kandaswaamy: Thermal Field Mapping Technique for Friction Stir Process. Ph.D. Thesis, Auburn University, 2009.

  22. A. Fehrenbacher: Enhancing Friction Stir Welding Through Process Instrumentation and Closed-Loop Control. Ph.D. Thesis, University of Wisconsin, 2012.

  23. L.L. Huetsch, J. Hilgert, K. Hertzberg, J.F. dos Santos, and N. Huber: in Mg2012: 9th International Conference on Magnesium Alloys and Their Applications, W.J. Poole and K.U. Kainer, eds., Vancouver, Canada, 2012, pp. 403–10.

  24. W. Woo, H. Choo, D.W. Brown, B. Clausen, Z. Feng, and P.K. Liaw: Mater. Sci. Forum, 2007, vol. 539–543, pp. 3795–3800.

    Article  Google Scholar 

  25. Z. Feng, X.-L. Wang, S.A. David, and P.S. Sklad: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 348–56.

    Article  CAS  Google Scholar 

  26. M.B. Prime, T. Gnäupel-Herold, J.A. Baumann, R.J. Lederich, D. Bowden, and R. Sebring: Acta Mater., 2006, vol. 54, pp. 4013–21.

    Article  CAS  Google Scholar 

  27. P.J. Webster, D. Oosterkamp, P.A. Browne, D.J. Hughes, W.P. Kang, P.J. Withers, and G.B.M. Vaughan: J. Strain Anal., 2001, vol. 36, pp. 61–70.

    Article  Google Scholar 

  28. B. Clausen, C.N. Tomé, D.W. Brown, and S.R. Agnew: Acta Mater., 2008, vol. 56, pp. 2456–68.

    Article  CAS  Google Scholar 

  29. M.R. Daymond and P.J. Withers: Scripta Mater., 1996, vol. 35, pp. 1229–34.

    Article  CAS  Google Scholar 

  30. A.M. Korsunsky, K.E. Wells, and P.J. Withers: Scripta Mater., 1998, vol. 39, pp. 1705–12.

    Article  CAS  Google Scholar 

  31. J. Hanan, E. Üstündag, and J.D. Almer: Adv. X-Ray Anal., 2004, vol. 47, pp. 174–80.

    CAS  Google Scholar 

  32. S. Celotto: Acta Mater., 2000, vol. 48, pp. 1775–87.

    Article  CAS  Google Scholar 

  33. I.A. Yakubtsov, B.J. Diak, C.A. Sager, B. Bhattacharya, W.D. MacDonald, and M. Niewczas: Mater. Sci. Eng. A, 2008, vol. 496, pp. 247–55.

    Article  CAS  Google Scholar 

  34. S.H.C. Park, Y.S. Sato, and H. Kokawa: J. Mater. Sci., 2003, vol. 38, pp. 4379–83.

    Article  CAS  Google Scholar 

  35. A.H. Feng, B.L. Xiao, Z.Y. Ma, and R.S. Chen: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2447–56.

    Article  CAS  Google Scholar 

  36. J. Hiscocks: Getting Started with Low-Angle Transmission Synchrotron Diffraction, ResearchGate, 2017. www.researchgate.net/publication/321025036_Getting_Started_with_Low-Angle_Transmission_Synchrotron_Diffraction_part_1_of_3. Accessed 7 Jan 2019.

  37. A.D. Krawitz and R.A. Winholtz: Mater. Sci. Eng. A, 1994, vol. 185A, pp. 123–30.

    Article  Google Scholar 

  38. D. Hardie and R.N. Parkins: Philos. Mag., 1959, vol. 4, pp. 815–25.

    Article  CAS  Google Scholar 

  39. D.J. Hughes, M.N. James, D.G. Hattingh, and P.J. Webster: J. Neutron Res., 2003, vol. 11, pp. 289–93.

    Article  Google Scholar 

  40. B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Reading, MA, 1956, p. 388.

    Google Scholar 

  41. E. Gliozzo, W.A. Kockelmann, and G. Artioli: J. Appl. Crystallogr., 2017, vol. 50, pp. 49–60.

    Article  CAS  Google Scholar 

  42. M. Gharghouri: Ph.D. Thesis, McMaster University, 1996.

  43. D. Tromans: Int. J. Recent Res. Appl. Stud., 2011, vol. 6, pp. 462–83.

    Google Scholar 

  44. U.F. Kocks, C.N. Tomé, H.-R. Wenk: Texture and Anisotropy, Cambridge University Press, 1998, pp. 289

    Google Scholar 

  45. T. Ungár: Scripta Mater., 2004, vol. 51, pp. 777–81.

    Article  CAS  Google Scholar 

  46. W. Woo, L. Balogh, T. Ungár, H. Choo, and Z. Feng: Mater. Sci. Eng. A, 2008, vol. 498, pp. 308–13.

    Article  CAS  Google Scholar 

  47. J. Hiscocks, B.J. Diak, A.P. Gerlich, and M.R. Daymond: Mater. Charact., 2016, vol. 122, pp. 22–29.

    Article  CAS  Google Scholar 

  48. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1955–64.

    Article  CAS  Google Scholar 

  49. R. Xin, B. Li, A. Liao, Z. Zhou, and Q. Liu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2500–08.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge S. Sahraei and M. Haghshenas for creating the friction stir welds, and C. Cochrane and T. Skippon for conducting several of the scans at APS. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Funding for this research was courtesy of Auto21 as Project C504-CTW and NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hiscocks.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 8, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 963 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiscocks, J., Daymond, M.R., Diak, B.J. et al. High-Resolution Residual Stress Mapping of Magnesium AZ80 Friction Stir Welds for Three Processing Conditions. Metall Mater Trans A 51, 1195–1207 (2020). https://doi.org/10.1007/s11661-019-05585-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05585-3

Navigation